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In 2004 mechanical detection of magnetic resonance was used to detect a single

electron spin. However, the demonstration required a carefully chosen sample and

the techniques developed there are not immediately applicable to detecting single

electron spins in organic spin labels and probes widely used in biology. In this

dissertation ultrasensitive mechanical detection of magnetic resonance is extended

to detect electron spin resonance from TEMPAMINE, a nitroxide spin probe. Us-

ing an ultrasensitive cantilever with a spherical nickel tip 4 µm in diameter 400 µB

sensitivity was demonstrated in a force gradient experiment and a route to single

nitroxide spin detection outlined. A necessity for reaching single spin sensitivity

is controlling the close approach surface force and frequency noise the cantilever

experiences. Using a nickel nanorod with 100 nm × 100nm cross section batch-

fabricated to overhang the tip of an ultrasensitive cantilever by 350 nm, the lowest

surface force noise ever achieved in a scanned-probe experiment was demonstrated

and the magnetic tip used to detect electron spin resonance. Unfortunately, the

surface frequency noise experienced by the batch-fabricated tip was extremely large

and the demonstrated sensitivity of the batch fabricated tip is poor. To take ad-

vantage of the extremely low surface force noise experienced by the overhanging

tip, a technique based on non degenerate parametric amplification that converts



a modulated frequency shift into an on resonance amplitude was developed and

demonstrated.

Mechanical detection requires a very high quality magnetic tip, however, the

tip must be small and located at the end of a fragile cantilever. A non destructive

way to determine the magnetic moment and anisotropy constant for the magnetic

tip is cantilever torque magnetometry. Prior studies have investigated in-plane

switching and here the in-plane to out-of-plane transition is studied. Multiple

sharp, simultaneous transitions in cantilever frequency, dissipation and jitter were

observed as the external field was swept. A quantitative model for the frequency

shift at high field and qualitative models for the frequency shift and dissipation

peaks near the switching field were developed.



BIOGRAPHICAL SKETCH

Eric William Moore was born on May 4, 1983 just outside of Pittsburgh in Mon-

roeville, Pennsylvania. He grew up in western Pennsylvania and graduated from

Penn-Trafford High School in the spring of 2001. Following high school, he mi-

grated across the state to attend Drexel University. Unlike nearly all other Drexel

students he foolishly chose not to participate in the co-op program and graduated

in the spring of 2005, earing a Bachelor of Science degree in Chemistry. While at

Drexel he worked on functionalizing carbon nanotubes using bipolar electrodepo-

sition with Prof. Jean-Claude Bradley and took part in the NNIN RUE program

during the summer of 2004, working with Prof. Seong Kim at Penn State on elec-

trospinning of hydrogel nanofibers. Eric arrived at Cornell in the fall of 2005 and

elected to join Prof. John Marohn’s group to work on mechanical detection of

magnetic resonance.

iii



ACKNOWLEDGEMENTS

I would like to thank the following people who contributed to this work and made

my experiences in graduate school as gratifying as they have been. My advisor,

John Marohn, whose support and guidance made this thesis possible. More than

anyone else, John brings unending enthusiasm to every project and every bit of

new data. He has a strong vision for where MRFM can go and the drive to take it

there. I worked closely with SangGap Lee during graduate school and suspect there

is no aspect of our experiment that we haven’t argued (often fruitlessly) about. I

hope that I was able to teach him at least a fraction of what he taught me. The

rest of team MRFM, Seppe, Steve, Joni, Sarah and Lee, thanks for making this

such a fun project to work on. To the rest of the Marohn group, I’m grateful to

have had the experiences sharing an office and lab space with you. The people in

the group are what make it an enjoyable place to work.

iv



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction 1
1.1 MRFM Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Force-Gradient Detected Electron Spin Resonance From Nitrox-
ide Spin Probes 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Cantilever and Displacement Sensor . . . . . . . . . . . . . . 14
2.2.2 Frequency Determination . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Microwave Resonator and Electronics . . . . . . . . . . . . . 23
2.2.4 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.2 Microwave Performance . . . . . . . . . . . . . . . . . . . . 46
2.4.3 Implications for Single-Electron Detection . . . . . . . . . . 57

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Friction, Jitter and Mechanically Detected ESR using a Over-
hanging, Batch-Fabricated Nanorod-tipped Cantilever 61
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Dissipation Measurements . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Frequency Jitter Measurements . . . . . . . . . . . . . . . . . . . . 66
3.4 Force-Gradient ESR Measurements . . . . . . . . . . . . . . . . . . 70
3.5 Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Evading surface and detector noise in measurements of force gra-
dients 89
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

v



5 Cantilever Torque Magnetometry of the In-Plane to Out-of-Plane
Transition in Individual Nickel Nanorods 99
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4 Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4.1 Spring Constant Shift . . . . . . . . . . . . . . . . . . . . . 110
5.4.2 Amplitude Dependence . . . . . . . . . . . . . . . . . . . . . 114
5.4.3 Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4.4 Angle Dependence . . . . . . . . . . . . . . . . . . . . . . . 121

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A B1 Magnitude Required to Saturate Using the Small Magnetic
Tip 126

vi



LIST OF FIGURES

1.1 Geometries used in ultrasensitive MRFM. . . . . . . . . . . . . . . 4

2.1 Scanned-probe electron spin resonance experiment schematic. . . . 15
2.2 Block diagram of the feedback circuit. . . . . . . . . . . . . . . . . 18
2.3 Schematic for the all-pass variable phase shifter. . . . . . . . . . . 20
2.4 Pictorial description of the frequency demodulation algorithm. . . . 21
2.5 Cantilever frequency power spectra for a series of tip-sample heights. 24
2.6 Diagram and photo of the microstripline resonator. . . . . . . . . . 25
2.7 Relaxation time measurements of TEMPAMINE in perdeuterated

polystyrene by pulsed ESR. . . . . . . . . . . . . . . . . . . . . . . 30
2.8 Protocol for force-gradient detection of T1 ∼ 1 ms spins. . . . . . . 33
2.9 Force-gradient detected electron spin resonance from TEMPAMINE

at various tip-sample separations. . . . . . . . . . . . . . . . . . . . 35
2.10 A representative frequency shift T1 measurement. . . . . . . . . . . 37
2.11 Protocol for measuring the sample spin-lattice relaxation time via

observation of cantilever phase shift. . . . . . . . . . . . . . . . . . 38
2.12 Phase-based measurement of the force-gradient ESR signal. . . . . 39
2.13 Phase-based measurements of sample spin-lattice relaxation times. 40
2.14 The dependence of electron spin resonance signal on microwave power. 41
2.15 Simulation of the force-gradient detected electron spin resonance

signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.16 Plot of microwave frequency, fmw versus the location of the Bb peak. 44
2.17 Schematic and photograph of the modified microstripline resonator. 48
2.18 Comparison of end-launch coaxial cable connectors. . . . . . . . . . 50
2.19 Schematic of the volume used for the ANSYS simulation of the

coplanar waveguide on silicon. . . . . . . . . . . . . . . . . . . . . . 54
2.20 Microwave magnetic field around the coplanar waveguide on silicon

calculated using ANASYS. . . . . . . . . . . . . . . . . . . . . . . 55
2.21 Measured transmission through the CPW while installed in the

microscope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 SEM image of the cantilever’s leading edge, showing the nickel
nanorod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Cantilever friction coefficient Γ versus tip-sample separation h. . . 64
3.3 Cantilever frequency noise power spectra at various tip sample sep-

arations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4 Frequency noise at the optimal modulation frequency as a function

of tip-sample separation. . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5 ESR frequency shift versus cantilever amplitude using a small mag-

netic tip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.6 Force-gradient electron-spin resonance signal acquired using a batch

fabricated magnetic-tipped cantilever. . . . . . . . . . . . . . . . . 72

vii



3.7 Comparison of simulation results between a rounded-edge magnet
model and sharp-edged magnet model. . . . . . . . . . . . . . . . . 74

3.8 Effective force due to a single spin directly below the tip. . . . . . . 79
3.9 Comparison between simulation with and without the small ampli-

tude approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.10 Effective force versus amplitude and simulated sensitive slices for

magnet model 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Power spectrum of cantilever frequency fluctuations. . . . . . . . . 90
4.2 Power spectral density of cantilever position, demonstrating para-

metric up-conversion. . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3 Cantilever magnetic resonance recorded via modulated force-gradient

detection and parametric up-conversion amplitude detection. . . . . 96

5.1 Coordinate system for cantilever magnetometry and electron mi-
croscopy images of nickel nanorods. . . . . . . . . . . . . . . . . . . 101

5.2 Cantilever magnetometry results, with the external field applied
along the easy-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Cantilever magnetometry results, with the external field aligned
with the hard-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Run to run variability in hard-axis cantilever magnetometry . . . . 107
5.5 Cantilever magnetometry with the external field misaligned from

the hard axis by 2◦ or 4◦. . . . . . . . . . . . . . . . . . . . . . . . 109
5.6 Amplitude dependence of the ∆k dip. . . . . . . . . . . . . . . . . 111
5.7 A potential energy surface cartoon for describing magnetic dissipa-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.8 Validating the numerical calculation of ∆k vs. µ0H. . . . . . . . . 122
5.9 Calculated ∆k dips for the external field misaligned by 4 different

angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

viii



LIST OF TABLES

5.1 Summary of cantilever and magnet properties. . . . . . . . . . . . . 100
5.2 Analysis of the ∆k dip depth data from Fig. 5.6 . . . . . . . . . . . 117

ix



CHAPTER 1

INTRODUCTION

Following the first demonstrations of electron spin resonance in 1944[1] and nu-

clear magnetic resonance in 1946, [2, 3] magnetic resonance techniques have become

vital tools in many branches of science and medicine. As a spectroscopic technique,

magnetic resonance provides a wealth of information on the structure and dynamics

of molecules, up to and including moderately sized proteins. Magnetic resonance

imaging, developed starting in the 1970s[4, 5], is a dominate clinical imaging tool

providing a routine, non-invasive view of structure and function with in the body.

Through these two modalities, magnetic resonance can provide insights covering

both large, tens to hundreds of micrometers and up, and small, molecular length

scales. However, intermediate lengths, ranging from a few micrometers down to

a few nanometers represent a blind spot of sorts, too large for most spectroscopic

techniques and too small for conventional imaging. Unfortunately, this is precisely

the length scale of much of biology and of much modern technology. The work

presented in this thesis is primarily concerned with attempting to bridge this gap

through the further development of a magnetic resonance technique based around

mechanical detection of magnetic resonance, known as magnetic resonance force

microscopy or MRFM.

Magnetic resonance force microscopy was proposed in 1991[6] as a nondestruc-

tive, 3-dimensional imaging technique capable of extremely high spatial resolution.

The proposal was motivated by the desire for a tool capable of imaging biologi-

cal structures for the purposes of advancing our understanding and treatment of

disease. Although this is still the goal that motivates much of the work, mechani-

cal detection is a general detection method and applications have emerged or are
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proposed in studies of nanostructured magnetic devices[7], superconductivity[8],

quantum dots[9], organic electronics, dopants in semiconductors[10] and quantum

computing[11–13].

In study of molecular scale biological structure the two dominate tools are X-

ray diffraction and conventional NMR. Despite the large number of studies and the

insights these tools provide there are strong limits on the samples that can be stud-

ied using them. X-ray diffraction requires a crystalline sample, which is difficult or

impossible to obtain for many large biomolecules and for very large or difficult to

crystallize molecules a synchrotron X-ray source may also be necessary[14]. Like-

wise, liquid state NMR is limited to small (. 50 kDa) expressible proteins that

do not aggregate in the high concentrations required for data collection[15]. Solid

state NMR is a powerful tool for studying polycrystalline or amorphous solids

and because the dipolar coupling is not removed by molecular tumbling, it repre-

sents an excellent opportunity to directly access molecular structure. However it

remains difficult to collect spectra at high enough resolution to permit full assign-

ment of the observed resonances and many of the structural studies to date have

depended on accessing structural information through large numbers of qualitative

constraints[16–18].

For macromolecules not amenable to analysis by conventional NMR or X-

ray diffraction, the tertiary structure of proteins[19–21], nucleic acids[22, 23] and

biomolecular assembles[24, 25] can be explored by using inductively-detected ESR

to measure distances between pairs of attached spin labels[20–23, 25, 26]. These

studies, however, require bulk quantities of sample[27] and demand multiple exper-

iments with spin labels attached to different locations in the target macromolecule.

Mechanical detection and imaging of single-electron spins has been demonstrated,
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in E’ centers in gamma-irradiated quartz[28] and this thesis represents the begin-

ning of an effort to apply magnetic resonance force microscopy to map the locations

of individual spin labels attached to a single biomacromolecule.

1.1 MRFM Basics

In contrast to conventional magnetic resonance where transverse spin magneti-

zation is detected by via the electromotive force induced in a receiver coil (or

other resonant structure) by the precession of spin magnetic moments, MRFM

detects spin magnetization by using the gradient-dipole force between the spin

magnetic moment and a magnetic field gradient source, generally a small ferro-

magnet, mounted on a microcantilever. The gradient-dipole force is

F = (µ · ∇)B (1.1)

where µ is the vector magnetic moment, B is the magnetic field, and F is the

force. Although the original proposal[6] was to directly detect the precession of

the spin magnetic moments by matching the cantilever’s resonant frequency to the

spin’s Larmor frequency, all successful MRFM experiments to date have detected

the longitudinal spin magnetization. Eq. 1.1 can be simplified by keeping only the

term involving the longitudinal spin magnetic moment, µz, that also produces a

force oriented along the cantilever’s soft direction,

Fx = µz
∂Bz

∂x
= µzG. (1.2)

Eq. 1.2 shows that the size of the force is determined by the magnetic moment of

the spin, a constant of nature, and the achievable magnetic field gradient, which,

fortunately, depends on the experiment design.

Shown in Fig. 1.1 are schematics of the experimental geometries used in all
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Figure 1.1: Schematics of the two geometries used in ultrasensitive MRFM, (a)
the springiness preservation by aligning magnetization or SPAM geometry used for
the work presented here and (b) the hang down geometry. For both schematics,
the cantilever is white and oscillates in x, in and out of the page, the magnetic tip
is gray, and the sample is cross hatched.

high-sensitivity MRFM experiments. In both geometries the long axis of the can-

tilever is normal to the sample surface and the cantilever oscillates parallel to

the sample surface. The cantilever is approached to the surface in this pendulum

geometry rather than the convention AFM geometry (long axis parallel, oscilla-

tion normal) because the electrostatic and van der Waals forces between the body

of the cantilever and the sample surface are strong enough to overcome the can-

tilever’s spring constant and cause the cantilever to snap into contact with the

surface. The geometry shown in Fig. 1.1(a) is called the springiness preservation

by aligning magnetization or SPAM geometry[29, 30] and has the advantage that

the external magnetic field does not cause either frequency shifts or dissipation in

a magnetic tipped cantilever. A drawback in comparison to the geometry shown

in Fig. 1.1(b), called the hang down geometry, is that the maximum attainable G

is smaller by a factor of 3.2× (for a spherical magnetic tip) in the SPAM geometry.

This trade off can be worthwhile if the magnetic tip is large. All of the MRFM

experiments presented in this thesis were carried out using the SPAM geometry.
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Before considering questions of resolution and the details of actually using

this force to create an image, it is worthwhile to consider the magnitude of the

spin force in a representative experiment and potential signal-to-noise ratio (SNR)

achievable when detecting the force. The magnetic field gradient produced by a

small ferromagnet depends on the material of the magnet and its shape; let us

consider a spherical magnetic tip magnetized along the z direction producing a

magnetic field gradient,

G(x, y, z) = µ0Mr3
tip

x (x2 + y2 − 4z2)

(x2 + y2 + z2)7/2
, (1.3)

where rtip is the radius of the magnetic tip, M is the tip magnetization, and the

spin is located at (x, y, z) relative to the center of the magnet. In the coordinate

system shown for the SPAM geometry in Fig. 1.1(a), the sample lies in the xz-plane

and a spin located at (2y, y, 0) feels the peak G of

Gpeak(y) =
16

25
√

5

µ0Mr3
tip

y4
(1.4)

If we assume rtip = 50nm, µ0M = 0.6T and a tip-sample separation h = |y|−rtip =

5 nm the peak force from a single electron spin is Fx = 22 aN, where 1 aN = 1 ×

10−18 N. Depending on the details of the experiment the force may be a static force

or the force may be modulated at a frequency, fmod. In either case the force will be

detected by monitoring the deflection of the cantilever. The magnitude and phase

of the cantilever’s deflection, x0 is determined by the cantilever’s susceptibility,

χ(f) and spring constant, kc,

x0 = Fx
χ(f)

kc
(1.5)

where the force, Fx and response, x0, are phasors. Modelling the cantilever as an

underdamped harmonic oscillator, its susceptibility will be

χ(f) =
f 2
c

f 2
c − f 2 + iffc/Q

(1.6)
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where fc = 1
2π

√
kc
m

is the cantilever’s resonate frequency, m its effective mass and

Q its quality factor.

The SNR with which the small spin force or any other force can be detected

is limited by the microscopic fluctuating forces that act on the cantilever. In an

ideal measurement the only source of force fluctuations is the cantilever’s finite

temperature, which gives rise to a fluctuating force with spectral density PF (f) =

4kBTΓ where kB is Boltzmann’s constant, T is temperature and Γ = k/2πfcQ is

the cantilever’s friction coefficient. In a real measurement there are other source

of force fluctuations external to the cantilever, such as fluctuating electric fields

from the sample that couple to uncompensated charge on the cantilever’s tip [31,

32]. These fluctuating forces, whatever the source, give rises to cantilever position

fluctuations with power spectral density

Pδx(f) = PF (t)
|χ(f)|2

k2
c

. (1.7)

The relevant noise amplitude for an AC measurement in a bandwidth, b will be

xnoise =

(∫ fmod+b/2

fmod−b/2
Pδx(f) df

)1/2

, (1.8)

where fmod is the center frequency of the measurement.1 For a small enough b the

integral Eq. 1.8 can be approximated as as

xnoise =
√
Pδx(fmod)b =

√
PF (fmod)b

|χ(fmod)|
kc

(1.9)

where we have used Eq. 1.7. Using Eqs. 1.5 and 1.9 the SNR is

SNR =
x0

xnoise

=
Fx√

PF (fmod)b
. (1.10)

1In a DC measurement, the lower integration limit will be 0 and the upper limit b/2 because
we have defined Pδx(f) as one-sided. Here we are defining b as the total width of the passband
rather than the width of the equivalent baseband filter. This choice is necessary to identify the
usual expression for Fmin below.
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The denominator of Eq. 1.10 for b = 1 Hz is known as the minimum detectable

force, Fmin. The value of rtip and µ0M used to calculate Fx = 22 aN above are

the nominal values for the magnetic tip used in Ref. 33 and Chapter 3. Using

the measured value of Γ for that cantilever at h = 5 nm, the minimum detectable

force is Fmin = 8 aN, producing an estimated SNR = 2.75 in 1 s. The SNR ratio

in Eq. 1.10 will be independent of the modulation frequency if PF (f) is white, as

it is in a thermally limited measurement[34]. However, nearly all high-sensitivity

force measurements modulate the force at fc for two reasons. One, external noise

sources do not necessarily have a white spectrum (e.g. building or microscope

vibrations). And two, the finite sensitivity of real displacement sensors means that

the displacement sensor becomes the dominate source of noise away from the Q

enhanced response near the resonant frequency.

Although the highest sensitivity MRFM experiment[35] to date used force de-

tection, the single electron spin experiment of Rugar et al. [28], and the experi-

ments presented here [33, 36, 37] detect the spin force via a small change in the

cantilever’s spring constant. Experimentally, one detects changes to the spring

constant by using the cantilever as the frequency determining element in a pos-

itive feedback circuit which drives the cantilever to a non-zero amplitude while

monitoring the cantilever’s resonant frequency. One of the principle advantages of

frequency shift detection is that, unlike the cantilever’s amplitude which requires

several cantilever damping times τ = Q/πfc to reach steady state, the resonant fre-

quency shifts instantaneously [38]. For a small shift, the change in spring constant,

∆k is related to the change in frequency, ∆f , as

∆f

fc
=

∆k

2kc
. (1.11)

The ∆k in an MRFM experiment can be calculated by expanding Eq. 1.1 in a
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Taylor series about the cantilever’s equilibrium position, and identifying the first

derivative term, dFx

dx
x as having the same form as Hooke’s Law and ∆k ≡ dFx

dx
.

Evaluating the derivative of Eq. 1.1 we find

∆k =
dµz
dx

G+ µz
dG

dx

=
dµx
dx

dBz

dx
+ µz

d2Bz

dx2
. (1.12)

To produce a ∆k the first term in Eq. 1.12 requires that the spin magnetic moment

depend on the cantilevers position, a requirement which is most easily fulfilled by

inverting the spin every half cantilever cycle [39–41]. The ∆k produced by the

second term does not require any particular spin modulation. Using the second

term to detect spins has been named Cantilever Enabled Readout of Magnetization

Inversion Transients or CERMIT by Garner and coworkers [42] because after a

volume of spins have been inverted, the ∆k they produced tracks the return to

thermal equilibrium directly and can be used to measure the spin-lattice relaxation

time. The CERMIT effect has been used to detect the thermal polarization of

71Ga[42, 43] and 69Ga[43] spins, the statistical polarization of 19F[44] spins, and—

in the experiments presented here—the thermal polarization of electron spins in

TEMPAMINE, an nitroxide free radical.

In a thermally limited force gradient measurement the thermomechanical po-

sition fluctuations of the cantilever appear as a white spectrum of frequency fluc-

tuations,

Pδf (f) =
kBTfc

2πkQx2
rms

(1.13)

where xrms is the cantilever’s RMS amplitude [38, 45]. Unfortunately, surface

induced frequency noise often sets the noise floor; this difficulty, and a method to

mitigate it will be extensively discussed in Chapter 4.

In MRFM, just as in MRI the spatial resolution comes from exciting magnetic
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resonance in a three-dimensional “slice” of the sample determined by the magnetic

field, magnetic field gradient, excitation frequency and resonance linewidth. This

is very different from most scanned probe techniques where most often it is the size

of the probe tip that determines the spatial resolution[46] and the sensitivity is

often only to the sample surface. The highest resolution image to date was created

by scanning the sensitive slice in three dimensions and reconstructing the image

using a nonlinear, iterative Landweber algorithm[35]. Creating an image using this

reconstruction technique is not ideal because the reconstruction will introduce ar-

tifacts unless the spin density is zero at the image boundaries, limiting the possible

samples to finite objects and precluding the study of films or small regions of larger

objects (e.g. a whole cell). This is very different from MRI where a linear, SNR

preserving Fourier transform is used for image reconstruction[47]. Other imaging

protocols that attempt allow for a linear reconstruction and semi-inifinte samples

are known, however, to date they are limited to micrometer resolution[48, 49] or

remain to be demonstrated in an MRFM experiment[50].

Above the force from a single electron spin was estimated to be a few tens of at-

tonewtons for a realistically sized gradient source. This force is much smaller than

can be detected using a commercially available cantilever and a key component of

the single electron experiment[28] was developing a cantilever capable of detecting

such small forces[51, 52]. However fabricating a sensitive enough cantilever is only

part of the challenge, because the cantilever must also have a magnetic tip pro-

ducing G ≥ 106 T/m while maintaining its force sensitivity near a surface. Ref. 33

and Chapter 3 have demonstrated that an ultrasensitive cantilever with a mag-

netic tip that overhangs the silicon body of the cantilever successfully maintains

Fmin ≤ 10 aN until a tip height of 3 nm. Prior to the experiment presented there,

all demonstrations of “scanned probe” (magnet-on-tip) MRFM used a magnetic
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tip that was attached to the cantilever by hand [39, 42, 53, 54] and limited to

rtip ∼ 75 nm by ion damage from focussed-ion beam milling [39, 54, 55]. The

cantilever and magnetic tip used in Chapter 3 were fabricated using a challenging

batch fabrication protocol [33] that, with further refinement, should be capable of

producing magnetic tips with rtip . 35 nm.

Demonstrating the integrity of the magnetic tip is difficult because it is very

small and located on the end of a fragile cantilever. Cantilever torque magnetom-

etry is one of the few techniques that can nondestructively probe the magnetiza-

tion of the tip, extracting the magnetic moment and anisotropy constant of the

magnet[29, 56]. Prior studies of magnetic tipped ultrasensitive cantilevers [56–58]

have only observed in-plane switching, however, when operating in the SPAM ge-

ometry the magnetic tip is magnetized out of plane assuming the easy axis of the

magnetic particle is aligned with the long axis of the cantilever. If operating with

a large enough external magnetic field (B0 � µ0Mtip), magnetizing the tip out-of-

plane does not present any additional concerns. However, the ESR experiments

presented here take place at ∼ 0.6 T, very near the saturation field for nickel tip

and incomplete saturation of the magnetic tip was a significant concern. Cantilever

magnetometry can also probe the in-plane to out-of-plane transition.
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CHAPTER 2

FORCE-GRADIENT DETECTED ELECTRON SPIN RESONANCE

FROM NITROXIDE SPIN PROBES

2.1 Introduction

A generally applicable approach for determining the tertiary structure of an indi-

vidual macromolecule in vitro at angstrom or sub-angstrom resolution would create

exciting opportunities for answering many long-standing questions in molecular bi-

ology. For macromolecules too large to characterize by NMR or X-ray diffraction,

the tertiary structure of proteins [19–21], nucleic acids [22, 23], and biomolecu-

lar assemblies [24, 25] can be explored by using inductively-detected electron spin

resonance (ESR) to measure distances between pairs of attached spin labels [20–

23, 25, 26]. These studies, however, require bulk quantities of sample [27] and

demand multiple experiments with spin labels attached to different locations in

the target macromolecule. Mechanical detection and imaging of single electron

spins has been demonstrated, in E′ centers in gamma-irradiated quartz [28], and

it is natural to explore applying magnetic resonance force microscopy (MRFM)

[35, 42, 59–61] to map the locations of individual spin labels attached to a single

biomacromolecule.

The ultimate limit of imaging resolution in MRFM is set by the intrinsic

linewidth of the resonance and the applied magnetic field gradient. For a 0.1 mT

homogeneous linewidth, typical of the organic radical studied here, a gradient of

4 × 106 T/m allows selective excitation of individual spin labels only 0.025 nm

apart. A magnetic field gradient this large has recently been demonstrated in an

MRFM experiment using ferromagnetic pillars fabricated by electron-beam lithog-
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raphy [35]. The force sensitivity required to detect single electrons in this gradient

is 40 aN, above the minimum detectable force (in 1 Hz bandwidth) of 5 − 10 aN

reported for a high-compliance cantilever operated with its metalized leading edge

above a metal-coated surface in high vacuum at 300mK [35]. In all high-sensitivity

MRFM experiments to date, sensitivity has been limited by interactions of the can-

tilever with fluctuating electric fields and electric field gradients originating in the

sample substrate. Efforts to mitigate this surface noise by fabricating magnetic tips

that extend beyond the leading edge of the cantilever are described in Refs. 62 and

63. Careful sample preparation can also help mitigate surface noise, for instance,

polystyrene is known to be one of the quietest samples [31, 32, 64] and efforts are

underway [65] to use polystyrene beads to improve upon the 4 nm imaging result

of Ref. 35.

Before these improvements in sensitivity and resolution can be harnessed to

study organic spin labels, a suitable method must be devised for creating a dis-

tinguishable spin signal. Unfortunately, organic spin labels do not meet the strin-

gent sample requirements of established mechanical single-spin detection protocols

[28]. The force-based i-OSCAR approach, used by Rugar et al. to detect single

electron spins in quartz [28], requires samples with rotating-frame spin-lattice re-

laxation times of T1ρ ≥ 0.1 s to reach single spin sensitivity. At low temperatures

we expect nitroxide spin labels to have spin-lattice relaxation times in the range

1 s ≥ T1 ≥ 1 ms and T1ρ’s of only a few µs [66–68], making signal modulation by

i-OSCAR [69] inapplicable. Cyclic adiabatic inversion [35] is likewise inapplicable,

since it relies on continuous spin locking meaning the governing relaxation time

is still T1ρ. Saturating the sample spins cyclicly is another approach to creating

a distinguishable signal [41, 70]. To achieve high sensitivity, spin magnetization

should be modulated at the cantilever’s resonance frequency. Cyclic saturation
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thus requires samples with spin-lattice relaxation times less than the cantilever

period, T1 < Tc, which would necessitate using cantilevers with impractically low

resonance frequencies, given the expected range of T1 for nitroxides at low temper-

atures. The force-gradient approach to mechanically detecting spins introduced by

Garner et al. [42] can in principle be used to create a detectable spin signal from a

nitroxide spin label. In practice, however CERMIT has to date [42, 44] only been

used to observe magnetic resonance from spins with T1 � 0.1 s and, moreover, has

relied on adiabatic rapid passage to flip spins and create a distinguishable signal.

Here we introduce an improved force-gradient approach to mechanically de-

tecting magnetic resonance that is applicable to samples — such as nitroxide spin

probes — with T1’s as short as ≈0.2 ms. We demonstrate the approach by using

a magnetic-tipped ultrasensitive cantilever operated at high magnetic field to de-

tect electron spin resonance from a thin-film containing the nitroxide spin probe

TEMPAMINE widely used in ESR studies of biomolecules. The expanded force-

gradient approach to mechanical detection of magnetic resonance introduced here

requires only milligauss microwave magnetic fields to detect ESR from a nitroxide

free radical, is well suited to the study of thin-film samples, and is compatible with

magnetic-tipped attonewton-sensitivity cantilevers at high magnetic field. The

new method is capable of detecting magnetic resonance in samples whose spin-

lattice relaxation times are as short as a single cantilever period, extending the

lower limit of sample relaxation times that can be detected using force-gradient

methods by ≥ 102. Our findings, moreover show that saturation, when married

to force-gradient detection, can be used to create a detectable signal even when

T1 � Tc. This combination of capabilities opens up new avenues for pushing detec-

tion and imaging of electron spin resonance from a wide range samples, particularly

nitroxide spin probes, towards single spin sensitivity.
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2.2 Apparatus

Experiments were carried out in high vacuum, P ≤ 10−6 mbar, and at liquid

helium temperatures, T = 4.2 K, in a custom-built probe. The microscope was

originally designed and constructed by Kuehn [43] for NMR experiments in either

the hang-down or SPAM geometries and contains no provision for lateral scan-

ning. As part of the work described in this thesis the microscope was modified to

perform ESR experiments at 17 GHz while maintaining the option of either ge-

ometry. These modifications consisted primarily of replacing the sample mounting

block and RF tank circuit with a planar microwave resonator and an appropri-

ate mounting block. The probe head was constructed from grade 2 commercially

pure titanium machined either in the LASSP machine shop or graduate student

machine shop. Coarse and fine tip-sample positioning was carried out using a com-

mercial nanopositioner (Attocube Systems AG, ANPx51/HV/LT) onto which the

cantilever assembly was mounted. Fig. 2.1(a) is a sketch of the experiment; the

components will be described below.

2.2.1 Cantilever and Displacement Sensor

The central component of the experiment is a high-compliance cantilever [51, 52]

(200 µm long, 4 µm wide and 0.34 µm thick) with spring constant k0 = 7.8 ×

10−4 N/m, resonance frequency f0 = 4975 Hz, mechanical quality factor Q =

1.05 × 105, and force sensitivity Fmin = 7.5 × 10−18 N in a 1 Hz bandwidth at a

temperature of T = 4.2 K and in a vacuum of P = 10−6 mbar. The last 5 µm

of the cantilever is only 1 µm wide to facilitate gluing a magnetic sphere to the

cantilever end. A nickel sphere of diameter 4µm (Novamet, CNS-10) was affixed to

14



Figure 2.1: (a) Scanned-probe electron spin resonance experiment schematic. A
microstripline half-wave resonator delivers a transverse magnetic field, B1, oscil-
lating at 17.7 GHz. In the center of the resonator, the microwave field oscillates
along the x direction. A longitudinal Zeeman field of magnitude B0 ≈ 0.6 T is
applied along the z axis. The high-compliance cantilever has its long axis along
y and oscillates in the x direction. The cantilever’s 4 µm-diameter nickel tip was
affixed by hand. The sample is a 230 nm-thick film of 40 mM TEMPAMINE in
perdeuterated polystyrene, coated with 20 nm of gold. The sample film was spin-
coated onto a 250 µm-thick quartz wafer. For clarity, sample and substrate are
not drawn to scale. (b) Molecular structures of (top) perdeuterated polystyrene
and (bottom) TEMPAMINE. (c) Scanning electron microscope image of the 4 µm
nickel magnet. At the top of the image the 1 µm wide narrowed tip of the cantilever
can be seen.

this narrow section as follows. A small amount of magnetic powder was dispersed

onto a polished brass surface. While observing through an inspection microscope,

optical micrometer stages were used to touch the cantilever tip to a small drop

of epoxy (Miller-Stephenson 907) and then to an isolated magnetic particle. The

anisotropy of these particles is small enough that allowing the epoxy to cure in

an applied field to align the magnetic easy axis with the field direction was not

necessary [42]. A scanning electron microscopy image of the magnetic particle used

in this experiment can be seen in Fig. 2.1(c).

Cantilever motion was detected using the temperature-tuned [71] optical-fiber

interferometer [72] described in Ref. 43, briefly summarized here. The optical

fiber (9/125 single mode, SMF-28, Corning; Metrotek part #FC/00-016ft-S-S1)

passes into the vacuum chamber through an 1/8” Ultra-Torr Swagelok fitting with
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a custom Teflon ferrule [73]. The optical fiber, sold as “900 µm single mode” by

Metrotek, does not have a Kevlar layer between the PVC jacket and the tight

inner buffer. We found that, in contrast to to Ref. 73, a helium-tight high-vacuum

seal could be formed with this fiber without removing the PVC jacket. When

machining a Teflon ferrule a #67 drill (0.032”∼ 813 µm) produced a correctly

sized hole to pass the optical fiber. Future instruments should use 1/4” fittings;

the Teflon ferrule quickly became irreversibly crushed with an 1/8” Swagelok, a

problem which is entirely solved by using a larger fitting.

The interferometer’s optical fiber was aimed at a reflective pad (octagonal,

20 µm side-to-side) fabricated 75 µm from the cantilever tip. The cantilever was

aligned by hand, using tweezers or dental picks, to the cleaved optical fiber which

was epoxied (Stycast 2850-FT, Lake Shore Cryotronics, Inc) to the cantilever

mounting block. Once epoxied, the tight inner buffer of a properly prepared fiber

extended through approximately half of the 5 mm epoxy covered region. This en-

sured that that the inner buffer strain relieved the fiber at the attachment point.

The cantilever extends only 12.5 µm past the edge of the optical fiber and the

epoxy on the upper surface of the optical fiber had to be very thin to ensure that

it did not touch the sample surface before the cantilever tip. The distance between

the optical fiber and the cantilever was 50–100 µm, determined by the position

of the epoxied fiber. Coupling visible light into the optical fiber greatly aided in

aligning the cantilever to the fiber. During experiments the cantilever-incident

optical power was P ∼ 3µW at a wavelength λ = 1310nm, corresponding to ∼ 1%

of the laser output. A commercial photodetector (New Focus, model 2011) was

used. The detected motion at the octagonal pad was smaller than the motion of

the cantilever tip. Modeling the cantilever as a singly clamped beam of rectangu-

lar cross section, we estimate that the tip deflection is 2.02 times larger than the

16



detected motion [74].

The cantilever’s spring constant was determined by observing thermomechan-

ical position fluctuations [75]. The power spectrum of a 20 s record of cantilever

position was calculated and navg = 50 such spectra were averaged together. The

averaged position power spectrum was fit to

Pδx(f) = Pδx(0)
f 4

0

(f 2 − f 2
0 )2 − f 2f 2

0 /Q
2

+ P det
δx (2.1)

where the first term is the spectrum of position fluctuations for a underdamped

harmonic oscillator and P det
δx is a white background from the finite sensitivity of the

displacement sensor. The spring constant was determined from the fit parameters

Pδx(0), f0, and Q using

k0 =
2kBT

πPδx(0)Qf0

. (2.2)

In order to estimate errors in the fitted parameters, we made the ansatz that

the standard deviation in the power spectrum was Pδx(f)×n1/2
avg [64, Supplemental

Information]. The cantilever’s quality factor was calculated from the measured 1/e

ringdown time τ using Q = πf0τ . The Q found from fitting the position fluctuation

power spectrum was always smaller than theQ found from the 1/e time. TheQ was

identical if measured on a positive-going or negative-going interferometric fringe,

indicating that the observed Q is not being reduced or enhanced by photothermal

feedback [76, 77].

2.2.2 Frequency Determination

To measure the cantilever frequency and determine frequency shifts, the cantilever

was driven into self-oscillation via a piezo mounted at the cantilever base using

a fixed-gain positive feedback loop, [38] the interferometer output digitized, and
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Figure 2.2: Block diagram of the feedback circuit. The circuit was constructed on
a solderless breadboard and driven using two 12 V batteries. The part numbers of
the integrated circuits used to built the feedback circuit are indicated at the top
of each element. The final programmable active filter is a independent instrument
and could easily be replaced with a second UAF42 filter.

the resulting signal fed into a high-bandwidth software frequency demodulator

[64]. The custom-built feedback loop could provide positive feedback for frequency

shift measurements or negative feedback for amplitude measurements. A block

diagram for the feedback loop is shown in Fig. 2.2. The feedback circuit operated

as follows. The input signal was filtered using a Q = 0.625 pass-band filter centered

at the cantilever’s resonance frequency and built around a active filter IC (UAF42,

Texas Instruments Inc.) used in the inverting pole pair configuration. Following

the filter, the signal was phase shifted using the op-amp circuit shown in Fig. 2.3.

This circuit is an all-pass filter with (as implied) magnitude response of |G(iω)| = 1

and a phase response of

argG(iω) = tan−1 2ωRpC

(ωRpC)2 − 1
(2.3)

where, as implemented R = 10 kΩ, C = 0.01 µF, and the potentiometer Rp covers

the range 0–10 kΩ. Two copies of this circuit were used in the feedback circuit

to provide a larger range of phase shifts. The phase shifters were followed by a

voltage follower which could optionally invert the signal, controlled by a switch

on the front panel. When the circuit was used in positive feedback mode, the
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filtered and phase shifted signal was converted to a TTL level square wave using

a comparator (AD790, Analog Devices, Inc.) whose output level was set by a

precision 5 V reference (AD586, Analog Devices, Inc.). In negative feedback mode

the comparator was bypassed using a switch on the front panel. The strength of the

feedback was controlled by multiplying the signal by an externally supplied voltage

using an analog multiplier (AD633, Analog Devices Inc.). The external voltage

was usually produced using one of the auxiliary DC voltage outputs from a lock-in

amplifier (SR830, Stanford Research Systems Inc.). Further gain, 1 ≤ K ≤ 10,

was applied using a non-inverting amplifier built around a single op-amp (OPA227,

Texas Instruments, Inc.). Before being sent to the drive piezo, the feedback signal

was filtered using a tunable active filter (model 3940, Krohn-Hite Corp.). The

feedback circuit provides a copy of the TTL level square wave for external use. The

TTL level copy was fed into a universal counter (SR620, Stanford Research Systems

Inc.) for real time frequency determination, used as a lock-in reference, and used

as a clock to provide cantilever synchronized microwave pulses. The correct phase

shift can be determined by a lock-in amplifier measurement, however, adjusting the

potentiometers controlling the phase shift to produce the largest possible amplitude

was sufficient to correctly phase the feedback. It was not necessary to adjust

the center frequency of the initial filter when changing cantilevers because the

resonance frequency of all of the cantilevers used fall with 4–9 kHz, a small enough

range to be covered by a single set of filter coefficients.

The software frequency demodulator uses a frequency demodulation algorithm

based on the Hilbert transform [78–80] that also provides the instantaneous ampli-

tude. To demodulate a signal s(t), here assumed to be narrow band, the analytic

signal associated with s is computed. The analytic signal is a unique complex

signal, z(t) ≡ s(t) + iH[s(t)], where H[ ] is the Hilbert transform. The Hilbert
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Figure 2.3: Schematic for the all-pass variable phase shifter. As implemented in
the feedback circuit, R = 10 kΩ, C = 0.01 µF, Rp = 0–10 kΩ, and as indicated in
the schematic, it is built around an AD711 op-amp.

transform is defined as

H[s(t)](τ) =
1

π
P

∫ ∞
−∞

s(t)

t− τ
dt (2.4)

where the P indicates that the Cauchy principal value is taken. Practically, this

integral transform takes sin t to cos τ and cos t to − sin τ . In the Fourier domain

the Hilbert transform can be carried out by multiplying by

H(f) =


+i if f < 0

0 if f = 0

−i if f > 0

(2.5)

If z(t) is recast into a polar representation, z(t) = a(t)eiφ(t), the utility becomes

clear. The instantaneous amplitude and phase of s(t) are the modulus and argu-

ment, respectively of z(t). The instantaneous frequency, f(t) of s(t) is

f(t) =
1

2π

dφ(t)

dt
(2.6)

The polar representation of z(t) also demonstrates that the Fourier transform of

z(t) is one-sided and contains only positive frequencies.

Our implementation of this frequency demodulation algorithm operates as fol-

lows and is shown pictorially in Fig. 2.4. First, the discrete Fourier transform of the
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Figure 2.4: Pictorial description of the frequency demodulation algorithm. The
digitized trace of cantilever motion (a) is Fourier transformed, (b). The resulting
spectrum consists of narrow band signals at ±fc. The spectrum is filtered and
converted to the Fourier transform of the analytic signal by multiplying by (c).
The resulting spectrum, (d), is one sided. The inverse Fourier transform of a one
sided narrow band spectrum is a complex exponential, (e). The argument of z(t) is
the cantilever’s phase, φ(t), (f), which is very nearly linear after the phase discon-
tinuities introduced by the arctangent have been removed by phase unwrapping.
φ(t) is divided in to chunks, here 1 ms in length, which are individually fit us-
ing linear least squares regression. The slope of each chunk is an estimate of the
instantaneous frequency, f(t) during that chunk, (g). Here f(t) is frequency mod-
ulated at fmod = 14.4 Hz due to spin-tip interactions as described in this chapter.
The modulus of z(t) is the cantilever’s amplitude, a(t), (h), which is divided into
chunks as in (f). The mean of a(t) during each chunk is computed, producing the
down-sampled estimate of the cantilever’s instantaneous amplitude, (i).
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digitized interferometer output is computed and the average cantilever frequency,

f̃c estimated as the (positive) frequency with the largest Fourier amplitude. This

estimated frequency is used as the center frequency for bandpass filtering which is

carried out in the Fourier domain by multiplying by

G(f) =
2

1 +
(

(f − f̃c)/b
)20 (2.7)

where b is a specified bandwidth. This filtering function is a shifted version of the

magnitude of the frequency response of a 10th order Butterworth filter [81]. The

function G(f) only passes positive frequencies and thereby simultaneously restricts

the bandwidth and performs the Hilbert transform. The inverse Fourier transform

is taken, producing the analytic signal. The modulus, a(t) and argument, φ(t) of

the analytic signal are divided into chunks where Tchunk = 1/fout and fout is the

sampling frequency of the output instantaneous frequency. For each chunk, the

instantaneous frequency is found by extracting the slope of φ(t) using linear least

squares regression and the instantaneous amplitude is found by taking the mean

of a(t).

Before carrying out the MRFM experiments described below, we investigated

the cantilever frequency noise experienced at small tip-sample separations by the

specific magnet tipped cantilever and gold-coated sampled used below. While

the cantilever was self-oscillated to an amplitude of x0p = 330 nm as described

above, the cantilever position was recorded for 25 s intervals and the instanta-

neous frequency calculated. Power spectra were computed from these frequency

traces; navg = 25 power spectra at each tip-sample separation were averaged to-

gether to give the spectra plotted in Fig. 2.5. At the largest tip-sample heights the

low-frequency cantilever frequency fluctuations are limited by thermal fluctuations

consistent with a cantilever temperature T = 4.2K [38, 64]. As the cantilever is
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approached toward the surface, low frequency surface induced frequency fluctua-

tions begin to grow in. At the closest tip-sample spacings used, the surface induced

frequency noise sets the noise floor for our measurements.

Earlier experiments in the Marohn lab using ultrasensitive cantilevers used

longer, L = 400 µm cantilevers with correspondingly lower resonant frequencies

f0 ≈ 2.2 kHz and spring constants k0 ≈ 55 µN/m [42, 43, 52]. Unfortunately

when a long cantilever was mounted on our commercial nanopositioner, we were

unable to measure thermally limited frequency noise. The literature provided by

the nanopositioner manufacturer indicated that the nanopositioner had a mechan-

ical resonance near 2 kHz. We hypothesized that using a cantilever with a similar

resonance frequency to the nanopositioner was the cause of the excess frequency

noise. To test this hypothesis we mounted the long cantilever to a solid block in

the probe, cooled to T = 4.2 K and repeated the frequency noise measurements.

With the cantilever on a rigid mount, the low-frequency frequency fluctuations we

observed were consistent with the cantilever temperature, indicating that mount-

ing the long cantilever on the nanopositioner was the source of the excess frequency

noise. In a further experiment using a shorter L = 200µm cantilever with unloaded

resonance frequency f0 = 9 kHz mounted on the nanopositioner, we were able to

observe thermally limited frequency noise, presumably due to the incommensu-

rate resonance frequencies. Following these measurements, all of the experiments

described in this thesis used the shorter, L = 200 µm cantilevers.

2.2.3 Microwave Resonator and Electronics

A gap-coupled half wave microstripline patch resonator [82, 83] was used to pro-

vide the oscillating transverse field. The microstripline transmission line geometry

23



Figure 2.5: Cantilever frequency power spectra for a series of tip-sample heights.
At high frequencies the power spectra are dominated by detector noise and pro-
portional to f 2. At lower frequencies and large tip-sample heights, the magnitude
is set by the mechanical properties and the temperature of the cantilever. At
the smallest tip-sample heights, surface-induced noise is the dominant source of
cantilever frequency noise.
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Figure 2.6: (a) Cross sectional view of a microstripline consisting of a dielectric
substrate (white) with dielectric constant εr and thickness d, a ground plane (gold
or copper, black) covering the bottom of the substrate and a strip conductor of
width w on the top of the substrate. The thickness of the ground plane and top
strip are not to scale. (b) Top view of the microstripline resonator. The substrate
dimensions, 0.6 in × 1 in are set by the microscope. An end-launch SMA connector
is attached (not shown) to the bottom edge of the substrate, connecting to the
short launch line that is coupled though the gap to the resonator patch. (c) A
photo of a first generation microstripline resonator on quartz.

consists of a thin strip conductor on top of a dielectric substrate with a conductive

plane below; a cross section of such a transmission line is shown in Fig. 2.6(a). The

lowest order mode supported by this transmission line is a quasi-TEM wave. Exact

analysis of this structure is complicated by the finite dimensions of the strip and

the two dielectric constants. However, approximate design equations are known

and vary between authors [84–86]; we used the design equations found in Ref. 85.

The impedance of the microstripline in ohms is

Z0 =
377
√
εeff

(
w

d
+ 1.98

(w
d

)0.172
)−1

(2.8)

where w and d are the width of the strip and the thickness of the substrate, respec-

tively, and εeff is an effective relative dielectric constant for the entire dielectric/air
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system, equal to

εeff = 1 +
εr − 1

2

(
1 +

1√
1 + 10d/w

)
. (2.9)

Initially, our microstripline resonators were fabrication on d = 750 µm thick

quartz (University Wafer) with εr = 3.8. Using these values and an impedance of

Z0 = 50 Ω in Eqs. 2.8 and 2.9 we calculated a strip width w = 1.584 mm.

A patch antenna or resonator is formed by terminating the microstripline and

placing an electrically floating patch a short distance away, as shown in Fig. 2.6(b).

The capacitance between the end of the transmission line and the patch will couple

electromagnetic waves into the patch and its size and shape will determine the

frequency of the resonator. The simplest version of such a resonator has the same

width as the microstripline, as shown in Fig. 2.6(b), but in principle the patch can

take other shapes. Our patch had the same width. When the effective electrical

length of the patch is equal to a integer multiple of λ/2, the patch will resonate.

Knowing the desired resonance frequency, fmw of the first resonance, the length of

the patch must be

l =
1
√
εeff

λ

2
−∆l (2.10)

where λ = c/fmw and c is the speed of light in a vacuum, and ∆l ∼ 0.3 mm is

a small frequency dependent correction to the physical length due to the fringing

fields at the open end of the resonator. The MRFM experiment does not depend

on a carefully tuned and matched resonator of a precise frequency and further

refinement of these values by, for instance finite element modeling, was not done

at this time. For a design frequency of fmw = 17 GHz on quartz, the resonator had

l = 4.49 mm.

The initial resonators on quartz were fabricated using optical lithography,

electron-beam evaporation, and liftoff to produce 200 nm thick gold layers. An
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end-launch SMA connector (Johnson Components, part #142-0701-881) was used

to connect the resonator to the microwave source. Fig. 2.6(c) is a photograph of

one of the resonators.

There were two problems with fabricating resonators this way. One, solder-

ing by hand to a 200 nm thick gold film on quartz was extraordinarily difficult

to do without burning holes in the film and two, the quartz substrates were not

particularly robust under even moderate loads, leading to broken resonators while

assembling the microscope. Despite these problems working resonators were fab-

ricated and used in the initial experiments.

To address the problems experienced with resonators fabricated on quartz sub-

strates, the resonator used to collect the data shown in this chapter was fabricated

on FR-4, a standard epoxy and fiberglass composite printed circuit board ma-

terial. FR-4 substrates (Injectorall, PC40, 1/32 in thick) were purchased with

1 oz/ft2 copper cladding on both sides. The dielectric constant for FR-4 is man-

ufacturer dependent and to determine the microstripline dimensions on FR-4 we

assumed a dielectric constant of εr = 4.4. The resonator was 5.6 mm long and

1.4 mm wide. To define the transmission line and resonator on the top side, an

appropriately sized pattern was printed out, and the border of the transmission

line cut into the copper cladding using a razor blade knife. To make an etch mask,

the areas of copper to keep were colored-in several times using a sharpie marker.

The excess copper was etched using a saturated warm ferric chloride hexahydrate

(FeCl3-6H2O) solution. The gap defining the resonator was created after etching

by taking one pass with a razor blade. The same model of end launch SMA con-

nector as was used with the quartz substrates was used with the FR-4 resonators.

Soldering to the FR-4 exhibited none of the problems experienced with thin gold
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films, since the copper cladding was ∼ 34 µm thick and could handle the heat load

without delaminating.

Microwaves were supplied by a Wiltron (now Anritsu) source (model 68147B)

borrowed from Dr. Doran Smith of the Army Research Laboratory. Following the

source, the microwaves were routed through a high speed switch (American Mi-

crowave Corporation, model SWN-218-2DT, option 912) and an amplifier (Narda

Microwave West, model DBP-0618N830). The peak power out of the amplifier was

approximately 32.5 dBm. This power was attenuated by 8.5 dB by the 4.5 m of

cable leading to the resonator.

To provide cantilever-synchronized microwave pulses, the 5 V peak-to-peak

square wave produced by the positive feedback circuit was digitally divided down

using 12-bit binary counters (CD4040B, Texas Instruments, Inc.) to produce a

square wave at the modulation frequency and the pulse repetition frequency. These

two waves were AND-gated together and the output used to trigger a pulse/delay

generator (Berkeley Nucleonics, model 565) which provided precise control of the

pulse duration. This system could maintain cantilever synchronization indefinitely;

schemes for cantilever synchronization using only carefully tuned pulse/delay gen-

erator settings were found to be more susceptible to unlocking as the cantilever

frequency drifted. The pulse/delay generator produced TTL-level pulses which

were accepted directly by the microwave switch.

To test the resonators, the reflected power was measured using either a network

analyzer (Agilent, 8722ES, 50 MHz–40 GHz) or a lock-in amplifier (Standford

Research System, SR830), directional coupler (Krytar model 102020020), and RF

power detector (Wiltron model 75KA50). When the resonator was connected by

a short length (∼ 18 in) coaxial cable and resting on the table, a strong resonance
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near the desired frequency was observed. This testing was used to determine the

appropriate size for the coupling gap and for the resonators. On quartz, a gap of

0.1 mm gave the highest Q. Later, when fabricating resonators on FR-4 a much

smaller gap was used (25 – 40 µm) and was found to produce a strong resonance.

The resonator used in this work had a quality factor of ∼ 800 when measured

outside of the microscope. Unfortunately, when installed in the microscope, no

resonance was observed for resonators on either substrate. The reason why no

resonance was observed is not clear.

To attempt to locate the resonance in situ, we amplitude-modulated the mi-

crowaves at the cantilever resonance frequency, f0, using a switch and observed the

resulting cantilever excitation using a lock-in amplifier with the cantilever located

between 100 nm and 10 µm above the sample surface. With this procedure, we

identified three resonances: 9.82, 13.79, and 17.99 GHz. Upon cool down the last

resonance shifted to 17.73 GHz. Although this procedure was used to select the

microwave frequency for this work, it is not clear what is being measured, or that

this is the best procedure to select the microwave frequency in situ.

2.2.4 Sample Preparation

The sample was prepared by spin casting TEMPAMINE and perdeuterated polystyrene

onto a quartz substrate and coating the resulting film with a thin layer of gold.

The molecular structure of TEMPAMINE and polystyrene are shown in Fig. 2.1(b).

The solution used for spin casting was prepared by dissolving 0.0063 g of of TEM-

PAMINE (Aldrich, 163945) in 1 mL of d8-toluene, 0.33 mL of which was further

diluted to 1 mL and from that, a 0.1 mL aliquot was added to a solution of 0.039 g

perdeuterated polystyrene (Polymer Source, P4179B-dPS, Mn = 200 × 103 and
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Figure 2.7: Relaxation time measurements of TEMPAMINE in perdeuterated
polystyrene by pulsed ESR at T = 4.16 K. (a) Primary echo amplitude versus
repetition frequency. (b) Primary echo decay.

Mw/Mn = 1.4) in 0.9 mL of d8-toluene. The resulting solution was spun at

2000 rpm for 30 s onto a 250 µm thick quartz chip (NOVA Electronics). Film

thickness was determined by profilometry on simultaneously prepared samples. A

top coating of 20 nm of gold was electron-beam evaporated in high vaccum onto

the chip at a rate of 0.2 nm/s. A small voltage was applied between the cantilever

and the gold coating to minimize non-contact friction [31, 32, 87] and surface fre-

quency noise [28, 64]. The wire used to apply the bias voltage was connected to

the thin gold layer using silver paint.

Samples for characterization by low temperature inductively-detected pulsed

ESR [36, Supplemental Information] were prepared by Sarah Wright as described

above, minus the gold, removed from the substrate and inserted into a 2 mm i.d.

Suprasil tube. The low temperature pulsed ESR measurents were carried out by

Peter Borbat. A two-pulse primary echo sequence was used to measure T1 and

T2. Figure 2.7(a) is a plot of the primary echo amplitude versus pulse repetition

frequency f . The sample T1 was estimated by fitting the primary echo amplitude
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V to [88]

V (f) = V (0)
(
1− e−1/(fT1)

)
(2.11)

where V (0) is the echo amplitude, measured at a repetition frequency of a few

hertz, and T1 is the spin-lattice relaxation time. From the fit we find T1 = 1.0 ±

0.2 ms. The π/2 and π pulses, separated by 250 ns, were of duration 16 and

32 ns respectively. At low repetition rates (< 500 Hz) the data deviates from a

simple exponential dependence, as one would expect for this temperature. The

20% uncertainty in T1 mostly originates from a small background impurity signal

that was present in the resonator at the time of the measurements. The sample

T2 was determined to be 460 ns from the primary echo decay, Fig. 2.7(b), using

45/90 ns pulse widths. Instantaneous diffusion [89] was only a very minor effect,

due to suppression by a fast spin flip-flop rate, which apparently was a major

source of the short T2 found.

2.3 Measurements

The cantilever was brought over the thin-film sample, located in the x-z plane of

Fig. 2.1, with the long axis of the cantilever along the y axis such that the cantilever

oscillated in the x direction. A static magnetic field, from a superconducting

solenoid, was applied along the z direction, parallel to the width of the cantilever

[29, 42]. We applied the field along the width of the cantilever in order to mitigate

damping of the cantilever arising from tip-field interactions [53]. The microwave

magnetic field from the microstripline resonator oscillates in the x direction.

We detect small shifts in the cantilever frequency due to spring constant changes

arising from spin-tip interactions. In the experimental geometry of Fig. 2.1, sample
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spins interact with the magnetic tip of the cantilever to shift the mechanical spring

constant of the cantilever by an amount

∆km =
∑
j

µz,j
∂2Btip

z

∂x2
(2.12)

where µz,j is the z-component of the magnetic moment of the j-th spin in the sam-

ple and G′ ≡ ∂2Btip
z /∂x2 is the second derivative of the tip field’s z component,

Btip
z , with respect to the oscillation direction x. The sum is over all spins in the

sample. To create a distinguishable signal, we flip spins in a region below the tip

via magnetic resonance. To achieve these spin flips, we turn on the microwave

field, in synchrony with the cantilever oscillation, for a half cantilever period ev-

ery few periods (Fig. 2.8). Spins at a certain distance from the tip are partially

saturated and this “saturated slice” is swept through the sample to create a re-

gion of diminished electron spin magnetization. The location of the saturated slice

is determined by the microwave frequency, the tip magnetization, the tip-sample

separation, and the static field. The microwave field is turned off for n − 1/2 cy-

cles, during which time the saturated-slice magnetic moment µres recovers towards

equilibrium. During these n cycles the cantilever receives a phase kick of

∆φ ≈ πf0

k0

µres
z G′

∫ nTc

0

e−t/T1 dt (2.13)

=
πf0 µ

res
z G′ T1

k0

(1− e−nTc/T1) (2.14)

where Tc is the cantilever period, T1 is spin-lattice relaxation time (assumed the

same in each saturated slice), and where we assume that ∆km � k0 (valid here).

After n cycles the microwave field is reapplied and the slice’s spin magnetization

resaturated. As a result of the repeated saturation, the cantilever’s frequency

change is approximately

∆fc ≈
1

2π

∆φ

nTc

≈ f0

2k0

× µres
z G′ (2.15)
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Figure 2.8: Protocol for force-gradient detection of T1 ∼ 1 ms spins. (A) The can-
tilever is self oscillated at its mechanical resonance frequency (4975 Hz; cantilever
period Tc = 201µs) to an amplitude of xrms = 233nm. When the cantilever is at its
maximum positive displacement, a microwave switch (B) is turned on. The applied
microwave field (partially) saturates the sample’s electron spins, which relax over
a few cantilever cycles. The microwave field remains on for a half of a cantilever
period, τp = Tc/2 ≈ 100.5 µs, during which time a region or “slice” of partially-
saturated spin magnetization is swept out in the sample. (A series of short pulses
are used to minimize sample heating, a single long pulse is also effective.) This
sample magnetization interacting with the second derivative of the cantilever’s tip
field shifts the mechanical frequency (C) of the cantilever. The microwave field is
reapplied, in synchrony with the cantilever oscillation, every few (n) cycles. (D)
This procedure is repeated for approximately 77 ms, followed by a 77 ms period
during which no microwave field is applied. (E) The resulting modulation of the
cantilever frequency contains components at the pulse frequency, however we are
sensitive only to the slower modulation (F) within the demodulation bandwidth
∼ 60Hz. The on-off cycling of the microwave pulses introduces a modulation of the
cantilever frequency at fmod. (G) The cantilever frequency power spectral density
versus frequency under the scheme of (A–F). The largest peak is at fmod = 6.48Hz.
The modulation is well approximated by a square wave and higher odd harmonics
of fmod are also visible.
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when nTc � T1, which will be approximately the case here.

To more easily detect this tiny frequency shift, the shift is modulated at fre-

quency fmod ≈ 6.48 Hz. This modulation is achieved by turning on and off the

microwave field every ∼ 1/2fmod seconds, again in synchrony with the cantilever

oscillation. The cantilever frequency from the demodulator is sent to a software

lock-in amplifier operating at reference frequency fmod. The modulation is a square

wave of amplitude ∆fc, resulting in a lock-in output whose primary frequency com-

ponent has a root-mean-square amplitude of δfc =
√

2∆fc/π.

A plot of δfc versus longitudinal field B0 is shown in Fig. 2.9 for various tip-

sample separations. The peak at field Bb occurs near the Larmor frequency of

Bres = fmw/γe = 0.63T and its location is independent of tip-sample separation;

this peak we assign to a “bulk” resonance in which the tip magnet is coupled

to a large number of spins far away from the tip. The signal peak at field Bc

is from spins seeing a tip-field opposing the longitudinal field. Assuming a tip

magnetization of µ0Mtip = 0.6T as expected for nickel, a tip field of approximately

−µ0Mtip/3 = −0.2T is expected for spins directly below a spherical tip at small tip-

sample separation. These spins require a longitudinal field of Bres+0.2T ≈ 0.8T to

achieve resonance, in rough agreement with field value Bc. We assign the peak at

field Bc as due to a “local” signal — a relatively small number of spins in resonance

directly below the tip. The location of the signal peak at field Ba and the change

of signal sign between field Bb and Bc can only be understood by simulating the

spins in resonance at a given field and by considering the sign of G′ experienced

by each spin in-resonance. This analysis requires detailed numerical simulations

to be described below.

A worry with detecting magnetic resonance mechanically, particularly of elec-
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Figure 2.9: Force-gradient detected electron spin resonance from TEMPAMINE,
acquired using the protocol of Fig. 2.8 with n = 3. (A–D) Fourier component of
the cantilever frequency at fmod = 6.48Hz versus longitudinal field. The signal was
acquired with detection bandwidth b = 0.45 Hz and microwave frequency fmw =
17.7 GHz. The signal was averaged for 10 s/pt with a field step of 2.5 mT between
each point for (A, B, D) and 0.5 mT for (C). (E) The tip field Btip (indicated with
arrows) was estimated as the separation between Bres = 0.63 T and the high field
edge of the signal and plotted versus tip-sample separation h. The data was fit to
Eq. 2.16 to give a tip radius of rtip = 1.85 ± 0.05 µm and a tip magnetization of
µ0Mtip = 0.44± 0.1 T.
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tron spins, is that spin diffusion [90] or thermomagnetic fluctuations in the tip

[39, 57, 91] might deleteriously lower the sample’s relaxation time. To address

these concerns, we measured T1 mechanically at the same temperature and field

as the previously described pulsed ESR measurement.

As indicated by Eq. 2.14 the phase kick that the cantilever receives and thus

the magnitude of the frequency shift produced (Eq. 2.15), depends on the ratio

nTc/T1. An attractive looking way to measure T1 is to measure the frequency shift

as a function of n, the number of cantilever cycles between microwave pulses. This

approach is problematic.

At a constant fmod, the background signal varied with duty cycle and therefore

n, making it difficult to see the expected exponential dependence of spin signal on

pulse delay on top of the varying background. Varying n but keeping the duty cycle

constant mitigated this complication, but required either simultaneously varying

fmod or using pulse sequences with unequal on and off durations, both of which led

to data that was not straightforward to interpret.

A representative data set is shown in Fig. 2.10. This measurement was carried

out as indicated in Fig. 2.8 with the time between pulses stepped by one cantilever

cycle between each point while the number of pulses in each on-cycle was held

fixed. Because of the low-pass filter present in the software frequency demodulator,

the measured signal reflects the low-frequency modulation at fmod and not the

high-frequency modulation introduced individually by each pulse. When the time

between pulses becomes large, the frequency shift seen in Fig. 2.10 decays, we

hypothesize, because the smoothed spin-induced cantilever frequency modulation

is no longer well approximated by a square wave at fmod.
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Figure 2.10: A representative frequency shift T1 measurement. This data is from
the peak at field Bb.

To address the difficulties with frequency-based T1 measurements, a differ-

ent approach is necessary. We developed an alternative phase-based protocol,

Fig. 2.11, for measuring T1 that yielded much cleaner data. Here, as in Fig. 2.8,

the microwave field was applied for half of a cantilever cycle to create a region of

diminished spin magnetization below the tip. The sample magnetization recovers

for n = 1 − 32 cycles, during which time the cantilever phase is advanced due to

interactions with sample spins by ∆φ (Eq. 2.14). Thirty-two microwave pulses are

applied and the net phase shift, ∆φtot = 32∆φ, is inferred by comparing the phase

before and after the period of microwave irradiation. We limited the number of

repetitions to 32 so that the longest irradiation period, 32 × 32 × Tc ≈ 0.2 s was

much shorter than the cantilever phase memory time (i.e., ringdown time) of ∼ 5s.

Before using this protocol to measure T1, we fixed n = 16 and measured the phase

shift versus magnetic field. The results of this measurement are shown in Fig. 2.12
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Figure 2.11: Modified force-gradient protocol for measuring the sample spin-lattice
relaxation time of T1 ∼ 1ms spins via observation of cantilever phase shift. (A) As
in Fig. 2.8, the cantilever is self oscillated and the microwave field (B) is turned on
for a half cantilever cycle every n cycles to saturate the sample spins. To measure
the spin-lattice relaxation time the delay n is stepped from 1 to 32 cycles. The
spin-induced cantilever frequency shift leads to a phase shift (C), ∆φ(n), which
depends on the ratio of the repetition time nTc to the spin relaxation time T1. (D)
A total of 32 pulses are applied, resulting in a net cantilever phase shift (E) of
32 ∆φ(n). The cantilever phase is measured for a time T acq

∆φ = 0.41s, before and
after application of the microwave field. The irradiation period was 0.2 s. The
two phase-versus-time signals are fit to a line and the spin-induced phase shift
computed by comparing the before and after intercepts.
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Figure 2.12: Phase-based measurement of the force-gradient ESR signal. For this
measurement, n = 16, and each point is the average of 10 measurements, in a
bandwidth b = 10 Hz.

and they reproduce the lineshape measure earlier.

The resulting ∆φtot versus n data are remarkably well described by Eq. 2.14

(Fig. 2.13). Fitting the data quantitatively required adding a small n-independent

term to Eq. 2.14 to account for two expected effects: background microwave-

induced phase kicks plus a phase advance arising from spin interactions with the

cantilever during the half cycle of interaction present even when n = 1. The

fits are excellent and the T1 measured for both bulk and local peaks are identical.

Moreover, the T1’s measured mechanically agree very well with T1 = 1ms measured

by pulsed ESR.

The finding that T1 ∼ 1 ms validates the assumption implicit in Eq. 2.12 that

T1 is longer than the cantilever period of Tc = 0.2 ms. In order to proceed with

numerically simulating the signal of Fig. 2.9, we verified that we were changing

sample magnetization by saturation and not, for example, by adiabatic inversion

[39, 69]. In Fig. 2.14 we plot the spin signal δfc versus microwave power P delivered

to the microstripline resonator. We can see that both the local- and bulk-peak

signals saturate above P ∼ 100 mW. Modeling the spin magnetization using

Bloch equations, we fit the data of Fig. 2.14 to δfc = δfpk
c S/(1 + S) with δfpk

c
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Figure 2.13: Phase-based measurement of sample spin-lattice relaxation time.
Cantilever phase shift versus delay time (A) at a field Bd = 0.8000 T at which
no spins are in resonance and (B-D) at fields Ba, Bb, and Bc (Fig. 2.9). The phase
shift data (open circles) were fit to ∆φtot = ∆φpk(1 − e−τd/T1) + ∆φbackgnd (solid
line) with τd = nTc the pulse delay, ∆φpk the peak phase shift, T1 the spin-lattice
relaxation time, and ∆φbackgnd a background phase kick (see text for details). The
phase shift at the n = 1 delay was anomalous (filled circles) and excluded from the
fits. Fit residuals are displayed on top. The measured spin-lattice relaxation times
are T1 = 1.41± 0.24 ms at Ba = 0.6125 T, T1 = 1.53± 0.29 ms at Bb = 0.6275 T,
and T1 = 1.27± 0.63 ms at Bc = 0.7200 T. Each point is the average of 25 runs of
T acq

∆φ = 0.41 s each.
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Figure 2.14: The dependence of electron spin resonance signal on microwave power
for the (A) “bulk” peak at field Bb = 0.6275 T and (B) “local” peak at Bc =
0.7200 T. The data was fit to δfc = δfpk

c S/(1 + S) with δfpk
c the peak frequency

shift and S = Pc2
Pγ

2
eT1T2 the saturation factor, with T1 = 1.3 ms and T2 = 450 ns

to give a coil constant of cP = 14 mG/
√

W.

the peak frequency shift and S = Pc2
Pγ

2
eT1T2 the saturation factor. Here cP is

a “coil constant” relating the power delivered to the microstripline resonator and

the magnitude B1 of the resulting transverse magnetic field; as defined, B2
1 = c2

PP .

Taking T2 = 450ns from inductively-detected pulsed ESR measurements, we infer a

coil constant of cP = 14mG/
√

W. At a given applied power we can now determine

the saturation factor S from Fig. 2.14 or, alternatively, from cP , T1, and T2.

To numerically simulate the signal it remains to model the field and the field

second derivative from the tip. We estimated the tip diameter and magnetization

by studying the signal (δfc versus B0) as a function of the tip-sample separation

h (Fig. 2.9). At each h, the tip field Btip was estimated from the signal as the

difference between the resonance field Bres = frf/γe = 0.6305 T and the high-

field edge of the local peak. A plot of Btip versus h can be seen in the inset of

Fig. 2.9. The tip was modeled as a uniformly magnetized sphere and the data of

Fig. 2.9(inset) fit to

|Btip| =
µ0Mtip

3

(
rtip

rtip + h

)3

(2.16)

with µ0Mtip the tip magnetization and rtip the tip radius. The observed Btip versus
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h is well described by Eq. 2.16 with µ0Mtip = 0.44±0.1T, in reasonable agreement

with µ0Msat = 0.6 T expected for the saturation magnetization of nickel. The

inferred tip radius rtip = 1.85±0.05µm, is in excellent agreement with 2.0±0.1µm

estimated from a scanning electron micrograph of the tip, Fig. 2.1(c).

Finally, the signal of Fig. 2.9 was numerically simulated. The tip was modeled

as a uniformly magnetized sphere using the measured µ0Msat and tip radius. The

sample approximated as a finite box with dimensions 27 µm × 24 µm × 0.215 µm

divided into 1390 × 1390 × 10 elements. The electron spin density in the sample

box was taken to be ρ# = 2.41 × 1025 m−3 as appropriate for a 40 mM TEM-

PAMINE sample. B and G′ were calculated at each location in the sample box.

The z component of spin magnetization was simulated using the steady-state Bloch

equations, with the measured T1, T2, B1, and calculated spin density. A magne-

tization profile was computed with the cantilever at its maximum extension; this

profile was translated in the x direction to mimic the cantilever oscillation, and

the smallest z magnetization at each grid point retained to mimic the saturated

slice. To calculate the spring constant shift, the contribution to Eq. 2.12 from

each grid element was computed by multiplying the magnetization profile by the

volume and G′ and summing over the entire sample. The resulting spring constant

shift was scaled by the Curie-Law magnetization, with B0 = 0.632T and T = 11K.

The temperature was varied to give good agreement between simulation and ex-

periment. In the experiment, a thermistor measured the temperature near the

sample; during microwave irradiation we observed T ∼ 8 K at this thermistor.

The measured temperature agrees well with the simulation temperature given the

proximity of the thermistor to the sample and the greater thermal conductivity of

titanium, where the thermistor is mounted, over the quartz chip used as a sample

platform.
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Figure 2.15: Simulation of the frequency shift, δfc, versus magnetic field for a
tip-sample height of 50 nm. The sensitive slice is shown for a selection of field
values, colored by the second derivative of the tip field. The simulation is fit to
the Fig. 2.9D data using only sample temperature as a free parameter.

The numerical simulation (Fig. 2.15) agrees remarkably well with the observed

signal. The simulation properly predicts not only the multiple sign changes in the

observed frequency shift as the field is increased but also the correct absolute size

of the observed frequency shift. Plotting the spins in resonance at selected fields

confirms our assignment of the signal at field Bd as due to spins directly below the

tip and helps us understand a number of initially puzzling features of the signal.

For example, we can see that the signal goes to zero between fields Bb and Bc

because of a cancellation of net G′, which can be both positive and negative, when

summed over the spins in resonance. We can also see that the signal peak at Ba

is indeed due to spins far away from the tip which experience a positive G′ and,

unlike most spins contributing to the signal, a positive field from the tip.
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Figure 2.16: Plot of microwave frequency, fmw, versus the location of the Bb peak.
The slope of a line fit to the data is proportional to the g factor for the electrons
in the sample. From the fit we extract, g = 2.026± 0.003. Microwaves frequencies
used were 8.99 GHz, 13.33 GHz, and 18.10 GHz.

While the ESR spectrum of TEMPAMINE cannot be observed directly in our

experiment because of inhomogeneous broadening of the resonance by the tip field,

we can measure the g factor with enough precision to demonstrate that the signal

in our experiment is due to unpaired electrons with g ∼ 2.0. To do this, we applied

the microwaves at other eigenfrequencies of our half wave resonator, (present, we

conjecture, due to nonidealities in the resonator). A plot of the location of the

Bb peak versus microwave frequency is shown in Fig. 2.16. From the slope of the

line we infer g = 2.026 ± 0.003. This is not in good agreement with g = 2.0057

measured by conventional ESR for TEMPAMINE [92]. The value of g that we

measure differs from the accepted value for TEMPAMINE for a number of reasons.

The main sources of error are uncertainty in the tip field as the external field is

reduced, magnetostriction in the z piezo causing changes in the tip height as the

field is changed, a change in tip magnetization during the field ramp, and difficulty

extracting the resonance field from the complicated lineshape.
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2.4 Discussion

2.4.1 Sensitivity

To estimate the spin sensitivity of our experiment we convert the measured fre-

quency noise to an equivalent spring-constant noise and then use Eq. 2.12 to cal-

culate an equivalent magnetic moment noise, resulting in

Pµ =
4k2

0Pδf

f 2
0G
′2 (2.17)

The measured frequency noise at height h = 120 nm, drive amplitude xrms =

233nm, and frequency offset fmod = 6.48Hz is approximately Pδf = 1×10−6Hz2/Hz

(see Fig. 2.5), 100 times the noise expected from thermomechanical cantilever

motion [38, 64]. Spins directly below the tip — those giving rise to the signal at field

Bc in Fig. 2.9 — experience the largest G′ and therefore couple most strongly to the

tip. From the simulations of Fig. 2.15 we infer that G′ varies from −1× 1010 T/m2

to 8.5× 1010 T/m2 for the spins in this slice. Taking the larger of these two values

gives a minimum detectable magnetic moment of µmin = (Pµb)
1/2 = 4× 102 µB in

a b = 1 Hz bandwidth.

Another estimate of the sensitivity can be made by counting spins in the Bc-

field slice. The total number of spins in the Bc-field slice is 4.22×105; weighted by

G′ at each point, these spins give rise to a frequency shift of 10 mHz. The frequency

noise in a 1 Hz bandwidth is 1 mHz, giving a minimum detectable number of (fully

polarized) spins in the Bc-field slice of 1.6× 103 µB. Considering that this second

estimate includes contributions from spins weighted by a wide range of G′’s, these

two estimates are in reasonable agreement.

This sensitivity is comparable to the 184 µB sensitivity (in 1 Hz bandwidth)
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achieved by Bruland et al. [93] who used a magnetic tip similar in diameter to

ours, a soft commercial Si3N4 cantilever, and cyclic saturation to detect electron

spin resonance from DPPH at 77 K. Kuehn et al. have shown that force detection

(via i-OSCAR) has equivalent signal to noise to force-gradient detection when the

tip is adjusted to have amplitude xc0p = 0.47 (rtip + h) [61]. Here xc0p = 330 nm to

avoid saturating the interferometer. Setting h to 1 µm to reduce surface noise and

using xc0p = 1.5 µm to maximize the sensitivity would improve µmin to 1× 102 µB,

comparable to that achieved in Ref. 93. The detection approach demonstrated here

is a significant advance over the Bruland et al. experiment because it is compatible

with high sensitivity cantilevers oscillating parallel to the surface and works for

samples with T1 ≥ 0.2 ms, such as nitroxides.

For comparison, conventional ESR microscopy of organic radicals has demon-

strated sensitivity [94] of 1.6×108 spins/
√

Hz at room temperature and 34 GHz. It

has been estimated that a sensitivity of 2.4× 104 spins/
√

Hz = 103 µB/
√

Hz might

be achievable at 77 K and 60 GHz [27].

2.4.2 Microwave Performance

When we began this experiment, we intended to perform spin flips via adiabatic

rapid passage (ARP) using the technique pioneered by IBM in their OSCAR ex-

periments [39] and used in the first cyclic-CERMIT experiment [44]. To perform

an ARP, the effective field, Beff, in the rotating frame begins well below or above

resonance and is swept through and then past resonance. If the effective field is

swept adiabatically, i.e. slowly enough, the spins will at all times lie along the

effective field and the effect of this procedure is to flip the spins. To sweep the

effective field either the RF frequency or the external magnetic field can be swept.
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In an NMR experiment operating in the RF band with a 0.1 – 50 ms ARP time,

producing the Beff sweep using a frequency chirped RF pulse, as in Ref. 42, is

straightforward. Using a frequency chirped pulse becomes increasingly difficult

(and expensive) as the pulse length shrinks and the Larmor frequency increases.

The insight that enables the OSCAR experiment [39] is that the necessary Beff

sweep can be produced using unmodulated RF, the inhomogeneous magnetic field

from the magnet tip, and the motion of the cantilever.

Let us estimate how much larger a B1 would be required to carry out a high-

efficiency adiabatic rapid passage using the motion of the cantilever to sweep Beff.

To achieve a high-efficiency ARP, the adiabaticity parameter,

ca = γB2
1

(
dBeff

dt

)−1

(2.18)

should satisfy ca � 1. For an OSCAR-style spin flip dBeff/dt = G× dx/dt, where

G = dBtip/dx is the first derivative of tip field in the direction of cantilever motion,

and x is the coordinate of the cantilever tip. For simplicity consider a spherical

tip of radius rtip operating at a height h = 0. Surface spins at location x = rtip/2

will see the largest gradient G ≈ 0.29µ0Mtip. For a sinusoidally-driven cantilever

x(t) = x0p cos(2πf0t), and we estimate

ca ≈
0.55γB2

1rtip

µ0Mtipf0x0p

. (2.19)

For x0p = 163 nm, rtip = 1.85 µm, B1 = 3.9 mG, µ0Mtip = 0.44 T, and f0 = 5 kHz,

we estimate ca = 6.5 × 10−6. A field of amplitude B1 ≥ 1.5 G would be required

to achieve, ca ≥ 1 in our experiment.

We were surprised to find that our coil constant is 260 times worse than that

achieved by Wago et al. [95] for a similar resonator fabricated on sapphire (fmw =

12.6 GHz). We hypothesized that this comparatively poor performance was likely
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Figure 2.17: (a) Schematic of the microstripline resonator, modified to allow a
bias voltage to be applied between the resonator patch and the cantilever tip. (b)
Photograph of the device.

due to two factors: not having a well-enough defined electrical ground in our probe

(e.g. ground loops) and the metal coating on the sample. Further experiments were

undertaken to investigate both of these possibilities. We were nevertheless able to

see a signal close to that theoretically possible because our technique requires such

a small microwave magnetic field.

For the experiments described in this chapter the ground plane on the MW

resonator was in direct contact with the metal body of the microscope. The only

other place where the microwave subsystem was connected to the probe body was

∼ 4 ft above, where the coaxial cable enters the microscope. Removing the MW

subsystem from electrical contact with the body of the microscope, by replacing

the coaxial feedthrough and employing a thin FR-4 spacer between the resonator

and the probe head, did not improve the microwave performance. This observation

seems to rule out ground loops as the cause of the poor resonator performance.

To check if the poor MW performance was due instead to the metal coating

on the sample, a different resonator, with similar room temperature ex situ per-
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formance, was prepared. To minimize the surface noise, an small inductor was

wound from 36 gauge copper wire and used to apply a bias voltage to the res-

onator patch. Because the self-resonance frequency of the coil is so low compared

the fmw ≈ 17 GHz resonance frequency of the patch, the electrical contact through

the coil does not disturb the MW resonance. This modified resonator is pictured

in Fig. 2.17. Instead of using a 250 µm thick quartz chip as a sample platform, an

identical TEMPAMINE doped perdeuterated polystyrene film was spun directly on

the surface of the FR-4 resonator. The coil constant of this resonator, measured as

described above was cP = 17mG/
√

W at fmw = 16.79GHz and cP = 39mG/
√

W at

fmw = 12.20 GHz. These values are a tiny improvement over the cP = 14 mG/
√

W

measured above. Furthermore, as above, the resonance vanishes once the resonator

is mounted in the microscope.

For comparison let us estimate the coil constant for an untuned microstrip

transmission line by assuming that the circularly polarized field above the strip is,

in the rotating wave approximation,

B =
µ0

2π

I

w
(2.20)

where w is the width of the line. If a current, I = (P/Z0)1/2 flows, the coil constant

will be

cP =
µ0

2πw
√
Z0

. (2.21)

Assuming w = 1.5 mm, we compute cP = 188 mG/
√

W. This estimated value is

a factor of 5 larger than our best measured value and does not include the
√
Q

enhancement expected for a resonator. To check this estimate, we can use it to es-

timate the quality factor of Wago’s resonator [95], and find QWago = (cWago
P /cP )2 =

(3.6 G/
√

W/0.188 G/
√

W)2 = 400.

To further investigate the poor performance of our microwave resonator, we
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Figure 2.18: Comparison of two styles of end-launch coaxial cable connectors,
Johnson Components, part #142-0701-881, used for experiment described in this
chapter (solid) and Southwest Microwaves, Inc., part #1492-01A-5 (dashed). For
both tests, either end of a∼ 1” length of 50 Ω microstripline on FR-4 was connected
using the same style of connector and the transmission loss, |S21| measured. The
Johnson connector is a solder-on connector, rated to 18 GHz, although it becomes
quite lossy at high frequencies. The Southwest connector, on the other hand, makes
electrical contact without solder, by mechanically clamping onto the substrate, is
rated to 50 GHz and exhibits much higher performance in our desired frequency
range.
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turned to modeling using ANSYS, a commercial finite element package. The simu-

lation predicts a coil constant of cP = 0.368 G/
√

W considering a position directly

above an untuned microstrip transmission line using the dimensions of our device.

This is much better performance than we achieve with a nominally tuned resonant

circuit. At this point it was not clear what the problem, was and we elected to

attempt to improve the transverse field performance by moving to an untuned line,

since simulation indicated that even without a Q enhancement, the achievable B1

could be two orders of magnitude better than we were currently achieving.

Moving to an untuned transmission line was also inspired by the introduction,

in 2007 by Poggio et al. of a “microwire” rf source, consisting of a lithographically

patterned copper wire, 1 µm wide, 0.2 µm thick and 2.6 µm long that produces

B1 = 40 G at 115 MHz while depositing only P = 350 µW of heat into their

T = 0.3 K microscope [96]. This is a coil constant of cP ≈ 2100 G/
√

W for

samples located within 100 nm of the wire. Because the sample volume in an

MRFM experiment is of similar dimensions to the microwire itself, having to work

with a small wire is an excellent trade off, particularly when operating at low

temperatures. The microwire is a broadband RF source [97], however, Poggio’s

design is limited to frequencies below 200 MHz due to the inductance of the wires

used to connect to the microwire chip. Based on the fantastic performance of

the microwire at radio frequencies, we began to evaluate extending the concept to

microwave frequencies. Although high-efficiency planar microresonators have been

developed by several groups for inductively detected ESR [98–100], the MRFM

experiment does not depend on the microwave resonator’s Q to enhance a small

spin induced microwave current and we would prefer to construct a broadband,

DC to 20 GHz transverse field source to allow the same device to be used for

ESR, NMR, and future dynamic nuclear polarization [101] experiments that would
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require applying simultaneous radiofrequency and microwave irradiation.

Initially, we considered a design involving a sub-wavelength constriction in a

microstripline [102]. There are better suited waveguide structures, however, such

as coplanar waveguide (CPW), where the impedance is nearly independent of the

substrate thickness, allowing the lateral dimensions to be scaled down without

compromising transmission. A CPW is a planar transmission line consisting of

a center strip with two semi-infinite ground planes located parallel to the strip

on the same side of the substrate [103]. A principle advantage of this design for

our application is that it does not have a ground plane on the bottom of the

substrate. A ground plane below puts most of the electric and magnetic fields in

the dielectric, between the conductors. However, it is only the magnetic field that

extends above the substrate that interacts with the spins; for CPW the magnitude

of the microwave magnetic field is nearly the same inside and above the substrate.

In our CPW device, the two ground planes are finite, and only slightly wider

than the center strip. Design equations for finite-ground CPW found in Ref. 104

were used to estimate the necessary dimensions for a 50 Ω transmission line. The

quartz or FR-4 substrates previously used for microstripline resonators require

CPW dimensions that are incompatible with mating to the available end-launch

connectors and a substrate with higher dielectric constant is required. Ultra-high

resistivity silicon (εr = 11.7) [105] is an attractive choice. A polished silicon surface

makes a very flat sample platform for scanning probe microscopy and Cornell is

well equipped to process silicon wafers. Despite these qualities, we selected a

hybrid design for mechanical strength and ease of making coaxial cable connections.

Our design is pictured in Fig. 2.21(a); the bulk of the substrate is a commercial

high dielectric constant composite (Arlon, AR1000 0.015 in thick, 1 oz/ft2 copper,
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εr = 10.0; patterned and milled by PCB Fab Express with a soft gold finish) and

only the center portion, where the cantilever approaches, is silicon. The CPW on

AR1000 is connected electrically to the CPW on silicon using gold wire bonds. To

hold the upper surface of the two substrate parallel and to keep the metal body of

the microscope far way, the AR1000 and silicon substrates sit on top of an 1/8”

thick macor plate. For initial tests, the widths of the metal strips were ∼ 300 µm

to facilitate aligning the cantilever to the CPW. Future designs, for use in a probe

that can scan laterally, will shrink these dimensions.

Before constructing any devices, we modeled the CPW using the ANSYS model

shown schematically in Fig. 2.19(a). As in our earlier simulations the conducting

strips were modeled as perfect, zero thickness, conductors. The impedance of the

CPW as design was checked and adjusted based on simulating a 2D slice of the

model in Fig. 2.19(a). The frequency dependent simulation results are shown in

Fig. 2.19(b). Simulations of the magnetic field above the CPW using the full

3D model indicate that the peak rotating magnetic field should be 0.5 G for

an input P = 250 mW. Additional simulations, carried out by Dr. Chang Shin

using CST Microwave Studio, which include the finite conductivity of the metal

layers, the appropriate thickness of the metal strips, both the AR1000 and silicon

sections, and losses in the dielectric, predicts 0.4 G, in rough agreement with

our simpler simulations. This simulation predicts cP = 800 mG/
√

W, more than

enough transverse field for testing on TEMPAMINE.

The measured transmission through the CPW is shown in Fig. 2.21 for the

device installed in the microscope; ex situ performance was similar. The transmis-

sion was independent of the location of the grounded, metal cantilever mounting

block down to block-transmission line separations of ∼ 125 µm, the closest ap-
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Figure 2.19: (a) Schematic of the volume used for the ANSYS simulation of the
coplanar waveguide on silicon. The opaque regions are the silicon dielectric (εr =
11.7) and the transparent regions are vacuum (εr = 1). For this simulation, perfect
zero-thickness conductors were assumed for the conductor and their locations are
shown in yellow. Rather than using a much larger than necessary volume, the
left side of the volume, shown in red, is a “perfectly matched layer” (PML) that
absorbs any incoming electromagnetic field preventing boundary reflections from
distorting the simulation results. A PML region was not used above or below since
the simulation included 5 substrate thicknesses (5× 0.5 mm = 2.5 mm) above and
below. The CPW is symmetric and a 1/2 size model was used, with the magnetic
field constrained to be perpendicular to the volume boundary at the right edge
of the model. The hatched faces were used as ports to introduce and extract the
microwave field from the simulation volume. The calculated frequency-dependent
impedance of this structure is shown in (b).
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Figure 2.20: Microwave magnetic field around the coplanar waveguide on silicon
calculated using ANASYS, this slice is taken 1.25 mm from port 1, see Fig. 2.19,
where P = 200 mW of microwave power was introduced. Although the simulation
covered only the region x ≤ 0mm, the full device has been plotted to ease interpre-
tation. The region depicted includes the silicon substrate, −0.5 mm ≤ z ≤ 0 mm,
and the vacuum above, 0 mm ≤ z ≤ 0.5 mm. The metal strips were zero-thickness
perfect conductors in the simulation, however, in this figure they are indicated by
thick black lines. From the central symmetry visible in |H| (top), the even mode
is excited. Operating in the SPAM geometry, both Hx (middle) and Hy (bottom)
components of the magnetic field are oriented appropriately to manipulate the
spins (B0 �). In a future hangdown experiment, the only Hx component will be
effective.

55



proach in an experiment. Because this is simply a length of transmission line, the

output of the CPW should be directed to a 50 Ω load. There is only one coaxial

cable in our microscope and adding a second one, to minimize heating of the probe

head, would require an extensive microscope redesign. Therefore, we terminated

the CPW using a 50 Ω load at 4 K. The DC resistance of the load we used (Mini

Circuits, ANNE-50X+) actually fell from ∼ 51Ω at room temperature to ∼ 50Ω at

4.2 K. Additionally, a bias tee (Aeroflex, 8810SMF2-18) and DC block (Fairview

Microwaves, Inc, SD3239) were used to allow biasing of the center CPW strip

relative to the cantilever to minimize the surface noise.

The CPW did not perform as well as simulated. The measured coil constant

was only cp = 38.2mG/
√

W at fmw = 18GHz, 21 times smaller than expected. One

possible failure mode, not captured by either simulation is the high frequency per-

formance of the wire bonds. The wire bonds were made using the MEI 1204 man-

ual bonder at the Cornell Center for Materials research using 0.0005 ∈ ×0.002 in

gold ribbon. It was very important that the loop of wire between either end of

the bond was kept as short as possible. To ensure that good electrical contact

was maintained between the strip on AR1000 and the strip on silicon as many

bonds as possible were made. For a CPW of the design used here, two bonds per

AR1000/silicon contact were made. It was also very important that the silicon

chip fit snugly into the AR1000 substrate. When the silicon chip was not a press

fit, the measured transmission through the assembly was very poor. Although

transmission line designs very similar to ours have been successfully used before,

the operating frequency was < 9 GHz [106]. A future redesign should consider

replacing the wire bonds with a direct mechanical contact (by flipping over one

component) instead.
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Figure 2.21: Measured transmission through the CPW while installed in the mi-
croscope. The grounded metal cantilever mounting block was ∼ 50 µm away from
the surface of the CPW during this measurement. The measured S21 has been
corrected to show only the loss from the CPW itself. This measurement is only
minimally effected by being located in the microscope.

2.4.3 Implications for Single-Electron Detection

Even with a carefully-chosen sample and meticulously designed cantilever [107],

magnetic tip [39, 57, 91], microwave source [108], and protocols to detect spin

fluctuations [69], 12 hr of signal averaging per point was required to observe sin-

gle electron spins via i-OSCAR detection in the experiment of Ref. 28. To image

individual nitroxide spin labels in a reasonable time, detection of individual elec-

trons must be accomplished in a few seconds or minutes. Our findings suggest two

modifications that will enable rapid detection of individual electron spins:

Boltzmann polarization and signal averaging. The Curie-law spin polariza-

tion is p = 0.037 here. Decreasing temperature to 300 mK and increasing

operating frequency to 50 GHz gives p = 0.999. Having such a fully polar-

ized spin as the initial condition dramatically improves the efficacy of signal

averaging. This is because the improvement in the power signal-to-noise
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ratio with the number of averages N scales as ∝ N for Curie-law signal, in

comparison to the ∝ N1/2 scaling for a stochastic spin-fluctuation signal [28].

Spin modulation. The protocol of Fig. 2.8 is suitable for a single-spin ex-

periment. With the microwaves on, spin nutation randomizes the magnetic

moment of a single spin to zero over the time of a cantilever cycle. The

randomly-oriented spin takes a time T1, on average, to realign with the field

via spin-lattice relaxation. The interaction of the single spin with the can-

tilever will thus, on average, reproduce the ensemble-average behavior de-

picted in Fig. 2.8. The modulation frequency in Fig. 2.8 need only satisfy

fmod � 1/T1, and one is at liberty to set fmod to avoid surface noise (at low

f) and detector noise (at high f).

Modifying the magnet-on-cantilever apparatus of Ref. 28 by replacing the irra-

diated quartz sample with a thin-film nitroxide-labeled biopolymer sample, work-

ing at higher field and lower temperature, and using the Fig. 2.8 protocol to detect

Curie-law polarization instead of using the i-OSCAR protocol to detect stochastic

polarization, we estimate that achieving a power signal-to-noise of 4 would require

only 3.5 min of signal averaging. This is already sufficient to collect a 1.2×103 pixel

image in three days. If we are willing to place the nitroxide-labeled biopolymer

sample on the cantilever, we can outfit the apparatus of Ref. 35 with a microwave

microwire. While the frequency noise in the Ref. 35 is unknown, if we assume

that is is limited by cantilever thermomechanical fluctuations, the minimum de-

tectable magnetic moment (in a 1 Hz bandwidth) is 0.27 µB, which would enable

the acquisition of a 643-pixel image in three days.

Our approach to mechanically detecting electron spin resonance has substan-

tially fewer technical constraints than the approach of Ref. 28. These relaxed
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requirements give us significant leeway to improve per-spin sensitivity.

Microwave source. We used a microwave field of rotating-frame amplitude

B1 = 3.9 mG to saturate spins and create a distinguishable signal while a

B1 = 3 G field and adiabatic inversion was used in Ref. 28. Although satura-

tion gives a signal half as large as adiabatic inversion, it requires, with a better

optimized resonator than used here, only 10−3 times the microwave field and

10−6 times the microwave power — a significant advantage since microwave

heating of the cantilever is a concern at low temperature [28, 108]. The

smaller required B1 gives us the freedom to employ a non-superconducting

resonator and metal coat the sample to reduce surface noise.

Cantilever design. Thermal motions of the cantilever tip create a fluctuating

magnetic field that, if the motions have spectral density near the Rabi fre-

quency, can be a potent source of T1ρ relaxation [107]. To obtain long signal

coherence times in i-OSCAR experiments, it was necessary to fabricate com-

plex hinged cantilevers with suppressed higher, megahertz-frequency modes

[28]. In contrast, the signal coherence time in our experiment is set by T1

and therefore sensitive only to cantilever motions at the Larmor frequency

of 17 GHz, which are negligible for an audio-frequency cantilever. Thus a

simple beam cantilever should be sufficient for detecting individual nitroxides

by the method introduced here — another significant simplification.

Tip material. Thermomagnetic noise in the tip can degrade both T2 and T1ρ

[39, 91] and, in magnet-on-cantilever experiments, can lead to a degradation

of cantilever Q at high magnetic field [39, 57]. Here, the Q degradation was

completely mitigated by orienting the field along the width of the cantilever

[29, 42] (at the expense of a reduction in G′, compared to an experiment in
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which the tip magnetization points towards the sample plane [28]). Ther-

momagnetic tip fluctuations can be suppressed by using a high coercivity

magnetic material for the tip, such as SmCo, and operating at low field [39]

or by using a low coercivity material, such as Ni, and operating at high field

[57]. The single-electron-spin experiment of Ref. 28 used a SmCo tip which

had to be affixed by hand to the cantilever and whose diameter was lim-

ited to approximately 151 nm by ion-beam-milling damage. Our detection

approach operates well at high field, opening up the exciting possibility of

using a nickel tip which is significantly easier to deposit and lithographically

pattern to sub-100 nm dimensions [33, 109].

2.5 Conclusion

The approach presented here dramatically expands the range of samples suitable

for characterization by mechanically detected magnetic resonance using ultrasensi-

tive cantilevers and opens up a new route to achieving single-electron sensitivity in

reasonable averaging times. As with cryoelectron microscopy, extending our studies

from a model system to a biomacromolecule will demand a significant investment

in developing sample preparation protocols. Detailed studies of the mechanisms of

cantilever frequency surface noise over such samples will be required to establish

the ultimate limits of the approach to single-spin detection outlined above. Nev-

ertheless, our findings clearly establish individual spin-labeled biomacromolecules

as exciting possible targets for a single electron-spin experiment and suggest that

research into preparing biological samples for cryogenic magnetic resonance force

microscopy should be aggressively pursued.
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CHAPTER 3

FRICTION, JITTER AND MECHANICALLY DETECTED ESR

USING A OVERHANGING, BATCH-FABRICATED

NANOROD-TIPPED CANTILEVER

3.1 Introduction

The force-gradient experiment described in Chapter 2 produced a peak signal of

0.025 mHz per fully polarized electron spin. Increasing the signal on a per spin

basis requires that the spins couple more strongly to the magnetic tip and that

coupling strength is ultimately determined by the magnitude of the tip field gradi-

ent, G = dBz/dx. There are two ways that G can be improved over the experiment

of Chapter 2: by making the magnetic tip from a magnetic material with higher

magnetization than the µ0M = 0.6 T of nickel and/or by engineering the shape

of the tip to produce a stronger tip field gradient. This chapter describes exper-

iments characterizing, using force-gradient detected ESR, close-approach surface

dissipation and jitter measurements, an ultrasensitive cantilever with an integrated,

overhanging nickel nanorod tip. Development of the batch fabrication procedure

used to produce the cantilever and tip are described in Ref. 33 with additional

details in Ref. 62. Further characterization of this magnetic tip, among others,

using cantilever torque magnetometry will be described in Chapter 5.

In in all high sensitivity MRFM experiments to date, the noise floor has been

set by surface induced dissipation or jitter rather than the cantilever properties

and the temperature. Although it is necessary to increase the signal per spin by

increasing the tip field gradient, understanding and minimizing the surface noise

is also vital to increasing sensitivity. Earlier studies of close approach surface force
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Figure 3.1: SEM image of cantilever’s leading edge, showing the nickel nanorod
overhanging the cantilever’s leading edge by 350 nm (scale bar = 200 nm). Below
the nanorod the 1.0µm×0.34µm narrowed tip of the silicon cantilever can be seen.
This SEM image is was taken by S. A. Hickman.

noise [43] demonstrated a sharp, metal tip experiences less surface force noise than

a blunt, silicon tip. Other workers have shown that even at low incident optical

power (P ∼ 250nW) the interferometer laser can excite electrons trapped at dopant

or defect levels creating a small amount of fluctuating mobile charge in the silicon

body of the cantilever [74]. This fluctuating charge can interact with electric fields

from the surface to cause dissipation. Based on these results, a cantilever designed

to be insensitive to surface force noise will have a sharp, metal tip, and will keep the

silicon cantilever body 100s of nanometers from the sample surface. The cantilever

used here was designed to meet these requirements and has a nickel tip 111 nm

wide, 100 nm thick, and 1475 nm long, which overhangs the single-crystal silicon

cantilever body by 350 nm. A scanning electron microscopy (SEM) image of the

leading edge of the cantilever is shown in Fig. 3.11.

Dissipation, jitter and ESR measurements described in this chapter were con-

ducted using the microscope, support systems, and gold coated sample described

in Chapter 2.

1Figures 3.1, 3.2, 3.3, 3.4, and 3.6 reprinted with permission from Hickman et al. ACS Nano
4, 7141 (2010). Copyright 2010, American Chemical Society.

62



3.2 Dissipation Measurements

The total dissipation, Γ, experienced by the cantilever was measured as function

of tip-sample separation, h. At each height, the feedback set point was adjusted to

maintain a cantilever amplitude of x0p = 131nm using a software PI controller and

the cantilever’s frequency, f0 and quality factor, Q, were measured as described

in Chapter 2. The dissipation was calculated using the measured spring constant,

k0, frequency and quality factor using Γ = k0/2πf0Q. The surface was located by

gently touching the tip of the cantilever to the surface. At tip-sample separations

of h < 2 nm the cantilever was in intermittent contact with the surface and the

dissipation could not be reliably determined.

Fig. 3.2(a) is a plot of total dissipation, Γ, experienced by the cantilever as

a function of tip-sample separation, h. For comparison, the dotted line is the

dissipation due to internal friction in the cantilever alone. We can see that the

surface-induced cantilever dissipation is negligible at tip-sample separations above

h = 10 nm. Internal sources of friction include clamping loses, motion of lattice

defects, thermoelastic dissipation, phonon-phonon scattering, etc. [110]. For thin

cantilevers, such as those used in this thesis, surface loss mechanisms have been

shown to be the dominate source of internal friction [111].

Instead of reporting Γ, often it is more convenient to consider instead the

magnitude of the smallest detectable force. The minimum detectable force, Fmin,

is related to the dissipation experienced by the cantilever through the fluctuation-

dissipation relation for the harmonic oscillator:

Γ =
1

4kBT
PF (f0) (3.1)

where kB is Boltzmann’s constant, T is temperature, and PF (f0) is the one-sided

63



Figure 3.2: (a) Cantilever friction coefficient Γ versus tip-sample separation h.
The dashed line indicates the magnitude of the dissipation that is internal to
the cantilever. Surface force noise begins to deleteriously increase the friction
experienced by the cantilever at h = 20 nm. (b) The minimum detectable force
versus tip-sample separation for our tip (empty circles) and for the tip reported in
Ref. 35 (filled circle and square).
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spectrum of force fluctuations, evaluated at the cantilever’s mechanical resonance

frequency, f0. Fmin is then defined as

Fmin =

(∫ f0+b/2

f0−b/2
PF (f)df

) 1
2

= (4kBT Γb)
1
2 (3.2)

with the bandwidth, b, conventionally taken as b = 1 Hz.

To compare our observed dissipation to the measured Fmin in the most sensi-

tive MRFM experiment to date, we convert the measured friction coefficient to the

equivalent minimum detectable force using Eq. 3.2. In Fig. 3.2(b) we plot Fmin

versus tip-sample separation assuming a temperature of T = 4.2 K (full circles).

For comparison, we plot Fmin reported at two tip-sample separations in the recent

4 nm imaging experiment of Ref. 35 carried out at T = 0.3 K (filled circle and

square). Our cantilever’s force sensitivity is worse at large tip-sample separations,

as expected since we are operating at a much higher temperature. In the experi-

ment of Ref. 35, the minimum detectable force degraded to 10 aN at a tip-sample

separation of h = 24 nm. Our magnetic-tipped cantilever, in contrast, maintains

Fmin ≤ 10 aN for tip-sample separations down to h = 3 nm. The ability to main-

tain excellent force sensitivity while operating at close separation, to maximize

the magnetic field gradient acting on the spin, is critical to achieving high spin

sensitivity in an MRFM experiment [61].

In addition to dissipation caused by charge on the cantilever tip interacting with

electric fields from the surface, eddy currents in the gold sample coating created

by the motion of the spatially inhomogeneous tip field provide another potential

source of dissipation. However, the dissipation measurements presented here were

taken without an external magnetic field applied. Depending on the microscopic

configuration of the remanence magnetization, the tip field may be very small. If

the tip field is small, the dissipation in an MRFM experiment may be both larger
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and longer range than measured here. Unfortunately, before this measurement

could be repeated in an external magnetic field, the nanorod’s magnet moment,

as determined by cantilever torque magnetometry, decayed to zero. Before un-

dertaking future MRFM experiments using a nanorod tipped cantilever, the close

approach dissipation should be measured with and without an external magnetic

field applied.

3.3 Frequency Jitter Measurements

Although cantilevers with overhanging nanorod tips experience very little surface

force noise until the tip-sample separation is < 10 nm, the surface-induced fre-

quency noise, as expected [54, 112], dominates the internal friction frequency noise

at much larger tip-sample separations. In Fig. 3.3 we plot the power spectral

density of cantilever frequency fluctuations versus offset frequency observed over

the gold coated sample for tip sample separations ranging from h = 18 nm to

h = 1 µm. At each tip-sample separation, the tip sample voltage was adjusted

to give the smallest frequency noise and twenty-five, 25 s transients of cantilever

frequency were recorded, converted to power spectra and averaged to produce the

spectra shown.

At all measured tip-sample separations, the frequency noise is limited by detec-

tor noise at high offset frequencies. The displacement sensor has a white position

noise floor that appears as frequency noise ∝ f 2 [38] and is the dominate source of

noise at offset frequencies of, for example, f ≥ 1 Hz at h = 1 µm and f ≥ 80 Hz at

h = 18 nm. The bandpass filter used in the software frequency demodulator has

been used to suppress frequency fluctuations above f ∼ 100 Hz in Fig. 3.3.
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Figure 3.3: Cantilever frequency noise power spectra at various tip sample sepa-
rations. At low offset frequencies Pδf (f) ∝ f−1 due to tip-surface interactions. At
large tip-sample separations and low offset frequencies, f ∼ 1Hz the cantilever fre-
quency noise is due to the thermomechanical position fluctuations of the cantilever.
As the offset frequency becomes large, Pδf (f) ∝ f 2 due to the finite sensitivity of
the optical-fiber interferometer. The optimal modulation frequency can be read
directly from this plot, at tip-sample separations ≥ 486 nm, f opt

mod ≈ 3 Hz. As
the tip height is decreased the optimal modulation frequency increases, to nearly
f opt

mod ≈ 50 Hz at h = 18 nm.
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At large tip-sample separations (h = 486 nm and h = 1 µm) and intermediate

offset frequencies (f near 1 Hz), the dominate source of cantilever noise is the

thermomechanical motion of the cantilever. The thermomechanical frequency noise

is [64]

P therm
δf =

kBTf0

2π2k0Qx2
rms

(3.3)

and we calculate P therm
δf = 1.4× 10−7 Hz2/Hz from measured cantilever properties,

temperature T = 4.2 K, and cantilever RMS amplitude xrms = 100 nm. This cal-

culated thermomechanical frequency noise is in good agreement with the observed

noise near f ∼ 1 Hz in the h = 486 nm and h = 1 µm traces of Fig. 3.3.

As the cantilever is moved closer to the sample, surface induced cantilever fre-

quency noise become apparent at low offset frequencies. This frequency noise is

presumably due to interactions of residual charge on the tip with electric field gra-

dient fluctuations from the sample.[112] At h = 18 nm, the power spectral density

of cantilever frequency noise at low f is ≥ 107 larger than the thermomechanical

limit.

When using the cantilever near the surface in an electron spin resonance ex-

periment, there is an optimal modulation frequency. This is because the surface-

induced frequency noise decreases ∝ f−1 while the detector noise increases ∝ f 2.

To measure the optimal modulation frequency, five 5 s transients of cantilever

frequency were recorded and analyzed as above, at a number of tip-sample sep-

arations. At each tip-sample separation, the optimal modulation frequency f opt
mod

was determined by finding the minimum value of the power spectral density of

cantilever frequency fluctuations. An eleven point moving average was used to

smooth the observed cantilever frequency noise power spectrum in order to facili-

tate identifying the minimum in the spectrum.
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Figure 3.4: Frequency noise at the optimal modulation frequency as a function
of tip-sample separation. Due to small size of the spin signal the frequency noise
floor can only be so large and the modulation frequency can only be so high before
the assumption that the modulation is a clean square wave begins to breakdown.
These requirements and the measured cantilever frequency noise set the operating
window of tip heights to h ≥ 10 nm.
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The optimal modulation frequency ranged from 25 to 5 Hz for tip-sample sepa-

rations ranging from 18 to 80 nm. A plot of the power spectral density of cantilever

frequency fluctuations at f = f opt
mod is shown in Fig. 3.4. We can see that surface

interactions are the dominate source of cantilever frequency noise at tip-sample

separations below approximately h = 70 nm.

3.4 Force-Gradient ESR Measurements

The number of techniques that can probe the magnetization of the nanorod is quite

limited because of its location on the tip of a fragile cantilever and its small size. If

one is restricted to techniques that do not require destructively immobilizing the

cantilever by sticking it to a substrate, that number is smaller still. Furthermore,

the MRFM experiment is particularly sensitive to, not the total magnetic moment

of the tip, but the magnetization of the leading edge of the nanorod. All together

this means that the best way to characterize a magnetic tip for use in MRFM is to

simply use it in an MRFM experiment. To permit useful conclusions to be drawn

in the event that no spin signal is observed, it is important to use a sample and

experiment design that have already been well characterized. Here, the MRFM

technique (Fig. 2.8), the sample and microwave resonator presented in Chapter 2

will be used to characterize the nanorod tip.

The cantilever was brought to 60 nm above the sample surface (80 nm above

the spin containing film) in the geometry of Fig. 2.1. To saturate sample spins,

a cantilever-synchronized train of 17.6 GHz microwave pulses was applied to the

sample, modulated at 9.56 Hz. Unlike the experiment of Chapter 2, each pulse

lasted for six cantilever cycles, followed by six cycles without microwave irradiation.
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Figure 3.5: Spin-induced frequency shift as a function of cantilever amplitude.
This data was collected at µ0H = 0.6225 T; all of the experimental parameters
were as described in the body of the document.

The pulse pattern was modified following an unsuccessful attempt using the half-

period pulses of Chapter 2. As before, the resulting spin-induced modulation of the

cantilever frequency was extracted from a digitized trace of cantilever displacement,

sent to a software frequency demodulator followed by a software lock-in amplifier.

After initially locating the signal, the signal size was measured as a function of

cantilever amplitude, Fig. 3.5, and x0p = 80nm selected as the cantilever amplitude

for further experiments.

The measured spin-induced cantilever frequency shift is shown in Fig. 3.6(a)

as a function of applied magnetic field. At each field point five 60 s traces were

averaged. Between each point the magnetic field was increased by 0.5 mT, and

the spectrum in Fig. 3.6(a) took 12 h to acquire. The spin signal is very small; the

peak δfc = 2 mHz is a relative frequency shift of 0.2 ppm.

In Fig. 3.6(b) we compare the observed signal to signal calculated numerically

by modeling the tip as a uniformly magnetized rectangular prism. When calculat-

ing the spin polarization, the sample temperature was take to be T = 11K based on
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Figure 3.6: Force-gradient electron-spin resonance signal acquired using a batch-
fabricated magnetic-tipped cantilever. (a) Observed cantilever frequency modula-
tion arising from spin-tip interactions. (b) Comparison of the observed frequency
modulation (open circles) and numerically calculated signal for various models
of tip magnetization (solid lines, models 1–4 going from top to bottom). Here
white region represent fully magnetized nickel and cross-hatched regions represent
damaged nickel.
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prior work with larger tips affixed to the cantilever by hand. Assuming that entire

overhanging region was damaged and nonmagnetic gives a calculated signal that

was far smaller than the observed signal (model 1). Assuming a fully-magnetized

tip (model 2), on the other hand, overestimates the signal size and the width of

the local signal, corroborating the existence of a damage layer. For reference, we

note that the large negatively-going central peak in these simulations arises from

a “bulk” resonance of far-way spins which experience little tip field. In model 3 we

assume a uniform 12 nm thick magnetic dead layer. This model better reproduces

the width of the local signal, but misses the signal present downfield from the bulk

signal. The downfield signal must be due to sample spins experiencing a tip field

which is parallel to the applied static magnetic field. To account for the presence

of downfield signal, in model 4 we introduce a 50 nm wide domain at the leading

edge of the tip magnetized antiparallel to the applied field; the agreement between

simulated and observed line shape is still poor. While comparing the width and

magnitude of the observed and simulated seen in Fig. 3.6 allows us to conclude

that the tip’s leading edge is magnetized with a damage layer no thicker than

approximately 20 nm, none of the tip-damage scenarios fit the data very well.

The comparatively poor agreement between simulation and experiment appar-

ent in Fig. 3.6 is surprising, given the quantitative agreement demonstrated in

an identical experiment carried out with a ∼ 4 µm diameter spherical nickel tip

(Chapter 2). Our simulations approximate the tip as an ideal rectangular prism

having uniform magnetization and assume that the cantilever’s amplitude is zero;

Additional simulations, described below, with more realistic tip shape and account-

ing for the finite cantilever amplitude do not substantially improve the agreement

between simulation and experiment.
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Figure 3.7: Comparison between a rounded-edge magnet model (left) and the
simulation from model 3 of Fig. 3.6 (right). The more accurate model of the
magnetic tip does not meaningfully improve the agreement between simulation
and experiment.

3.5 Simulation Details

A rectangular prism is a convenient model for the magnetic tip because the mag-

netic field and derivatives can be evaluated exactly. However, it is clear from

the SEM image of the magnetic tip, Fig. 3.1, that the edges of the nanorod are

not sharp, but are substantially rounded over. To account for this, the magnetic

tip was also modeled as a rectangular prism with rounded edges. For this round

edge model, the magnetic field and derivatives were calculated by numerically in-

tegrating the “magnetic charge” or pole density over the surface of the magnet.

Fig. 3.7(left), shows the signal calculated assuming magnet model 3 from above

with all of the magnet’s edges rounded over with a radius of redge = 20 nm. The

right hand plot of Fig. 3.7 reproduces the model 3 simulation from Fig. 3.6 for com-

parison. This more accurate magnet model leads to a smaller signal overall but

does not change the overall shape of the simulated signal. Because the rounded-
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edge model is much slower to simulate and does not meaningfully improve the

agreement with experiment, the original rectangular prism model was used for all

following simulations.

In Chapter 2 and in the simulations in Fig. 3.6 the spin induced spring constant

shift was calculated as

kmag =
∑
j

µres
z G′ (3.4)

where the sum is over all of the spins in resonance and G′ = ∂2Bz/∂x
2. Implicit

in this equation is that the cantilever amplitude, x0p, is small. To determine

what constitutes a small value of x0p there are two other lengths that must be

considered: the radius of the magnetic tip, rtip and the tip-sample separation, h.

The experiment described in Chapter 2 took place in the limit rtip � h, x0p, (rtip =

2 µm, h = 50–1000 nm and x0p = 163 nm) and the small amplitude assumption

holds in this limit. For the force-gradient experiment described in this chapter,

rtip ≈ 50 nm, h = 80 nm, and x0p = 40 nm; it is not clear a priori that such

an assumption will hold when rtip ≈ h ≈ x0p. To check if the small amplitude

approximation is valid we can simulate the experiment taking into account the

effect of the non-zero cantilever amplitude.

Eq. 3.4 comes from considering that the frequency of the cantilever is modified,

in our experiment and in any other force gradient technique, by a position depen-

dent force. Generally, this position dependent force is modeled using only the first

position dependent term of its Taylor expansion:

Feff =
∂Fts

∂x
x (3.5)

where the x is cantilever coordinate and Fts is the force on the tip from the sample.

In Eq. 3.4 we have identified kmag ≡ ∂Fts/∂x by recognizing that Eq. 3.5 has the

same form as Hooke’s law. As discussed above, this equation is valid only when
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the motion of the cantilever tip, x is small enough that the force can be faithfully

modeled by only the first derivative. To move beyond this approximation, we will

use a result from classical Hamiltonian-Jacobi perturbation theory [113–115] that

allows us to calculate the frequency shift or equivalently the spring constant shift

directly. This approach to calculating frequency shifts was first applied to scanned

probe microscopy by Giessibl [116], who considered tip-sample forces ∝ −x−n,

with n an integer. Classical perturbation theory has also been previously applied

in the context of MRFM to calculate the OSCAR frequency shift and sensitive

slice2 [117].

In Hamiltonian-Jacobi perturbation theory, the frequency shift due to a per-

turbing Hamiltonian V will be

∆f = − f0

k0x2
0p

〈Fts(x)x〉T

= − f0

k0x2
0p

1

2π

∫ 2π

0

Fts(x0p cosφ)x0p cosφ dφ (3.6)

where Fts = −∂V/∂x and the brackets indicate that the average is taken over

one cantilever cycle. If the perturbing potential also depends on the conjugate

momentum or the time Eq. 3.6 must be modified slightly [113]. For the perturbing

Hamiltonians considered in this work Eq. 3.6 will be sufficient. If V (x) = ∆kx2/2,

the predicted frequency shift is independent of x0p as expected and the usual

formula relating the (small) spring constant shift to the frequency shift, ∆f =

f0∆k/2k0 is recovered. Before we apply Eq. 3.6 to the MRFM experiment described

above, let us consider a simpler problem that can be solved exactly—calculating

the frequency shift due to a single spin located directly below the tip.

Working in the hangdown geometry, consider a cantilever oriented with its long

2Berman et al. call it the “perturbation theory of Bogoliubov and Mitropolsky”, but it is the
same as the perturbation theory presented here.
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axis aligned with the ẑ axis and oscillating along x̂, with a spherical magnetic tip

of radius rtip and magnetization M = Mẑ. The cantilever interacts with a single

spin of magnetic moment µ = µz ẑ located at (0, 0, z), relative to the center of

the magnetic tip. The potential that couples the spin to the tip depends on the

displacement of the cantilever, x, is

V (x) = −µzBz = −µz
µ0Mr3

tip

3

2z2 − x2

(z2 + x2)5/2
. (3.7)

The force on the cantilever due to the spin-tip interaction will be

Fts = −∂V
∂x

= µzµ0Mr3
tip

x3 − 4z2x

(z2 + x2)7/2
. (3.8)

Inserting Eq. 3.8 into Eq. 3.6 we find,

∆f =
f0µzµ0Mr3

tip

2πk0x2
0p

∫ 2π

0

(x3
0p cos3 φ− 4z2x0p cosφ)x0p cosφ

(z2 + x2
0p cos2 φ)7/2

dφ. (3.9)

In evaluating the integral, it is useful to introduce a unitless variable, z̃ ≡ z/x0p.

Substituting and rearranging slightly we find

∆f =
f

2kx0p

µzµ0M

rtip

(rtip

z

)4 z̃4

π

∫ 2π

0

cos4 φ− 4z̃2 cos2 φ

(z̃2 + cos2 φ)7/2
dφ︸ ︷︷ ︸

I(z̃)

. (3.10)

The underbraced integral is an elliptic integral:

I(z̃) =
z̃3

3π(z̃2 + 1)3

{
4(2z̃4 − 7z̃2 − 1)E

(
− 1

z̃2

)
− 8(z̃4 − 1)K

(
− 1

z̃2

)}
(3.11)

where K(m) and E(m) are the complete elliptic integrals of the first and second

kinds, respectively.3

In a measurement the signal-to-noise ratio (SNR) for detecting the spin should

go to zero as the cantilever amplitude goes to zero because P therm
δf ∝ x−2. We also

expect that the SNR should go to zero as the cantilever amplitude becomes very

3All elliptic integrals used in this thesis are defined in terms of the parameter m rather than
modulus k(≡

√
m). This is the same convention used in Mathematica and Matlab.
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large because the effective spin-tip distance will be extremely large for most of the

cantilever cycle. To demonstrate that these expectations are correct, we should

consider the SNR rather than the frequency shift. The thermal frequency noise in

a measurement bandwidth b is

∆fnoise =
√
P therm
δf b =

√
2PF b

f0

2k0x0p

(3.12)

where PF = 4kBTΓ is the one-sided spectrum of force fluctuations. Dividing

Eq. 3.10 by Eq. 3.12, we calculate the SNR to be

SNR =
1√

2PF b

µzµ0M

rtip

(rtip

z

)4

I(z̃) (3.13)

where I(z̃) is defined in Eq. 3.11. The SNR is composed of two parts, a ratio of

constants that set the size of the signal and a unitless part, I(z̃), of order unity,

that encapsulates the amplitude dependence.

I(z̃) reaches its maximum at a finite cantilever amplitude. Maximizing I(z̃),

we find I(z̃max) = 1.07 at z̃max = 2.1. This is equivalent to x0p = 0.47z. Inserting

these optimal values into Eq. 3.13, the optimal SNR for detecting a single spin

directly below the tip is

SNRopt =
1√

2PF b

1.07µzµ0M

rtip

(rtip

z

)4

. (3.14)

This expression and the optimal cantilever amplitude are identical to those derived,

using a different approach, in Ref. 61. However, in practice the SNR calculated

here is likely an overestimate, because as discussed above, it is the frequency noise

due to surface proximity and the displacement sensor that set the noise level when

the tip-sample separation is small. Rather than dividing Eq. 3.10 by Eq. 3.12 to

produce the SNR, converting Eq. 3.10 to an equivalent force ∆kx0p by multiplying

by 2k0x0p/f0 produces an expression that has the same amplitude dependence as

Eq. 3.13 but is independent of a particular model for the noise. Fig. 3.8 is a
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Figure 3.8: Effective force on the cantilever tip due to a single electron spin located
directly below the magnetic tip in the hangdown (diamonds) and SPAM (circles)
geometries. For both geometries, the solid line is the exact result and the symbols
are the results of numerically integrating Eq. 3.10 or its equivalent expression for
the SPAM geometry by approximating the integrand by 41 points and using the
trapezoid rule. These results were calculated using rtip = 50 nm, z = 75 nm,
µ0M = 0.6 T, and µz = 1 µB. The ∆k predicted by Eq. 3.4 appears here as the
slope of the curve near x0p = 0 nm.
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Figure 3.9: Comparison between simulated signal from model 3 (Fig. 3.6) using
the small amplitude approximation (left) and classical perturbation theory (right).
Comparing the peak heights using the dotted lines shows that including the effect of
the cantilever amplitude on the frequency shift is small. Both simulations assume
a cantilever amplitude, x0p = 40 nm.

plot of Eq. 3.10 expressed as an effective force using rtip = 50 nm, z = 75 nm,

µ0M = 0.6 T, and µz = 1 µB. As expected, the force is zero at vanishing x0p, goes

to zero at large x0p and reaches a peak force of ∆kx0p = 23.7 aN at x0p = 35.3 nm.

The equivalent result for an experiment in the SPAM geometry is also plotted in

Fig. 3.8. The peak force is, however 3.2× smaller, only reaching ∆kx0p = −7.4 aN

at x0p = 45.8 nm.

An example of applying Eq. 3.6 to the MRFM experiment described in this

chapter is shown in Fig. 3.9(right) for model 3 of Fig. 3.6; the simulated signal

from Fig. 3.6 is reproduced on the left. To produce the right hand curve, the sen-

sitive slice was defined as before, by calculating the instantaneous sensitive slice

using the steady-state Bloch equations with the cantilever at maximum extension,

translating the magnetization profile in the x direction to mimic cantilever oscilla-

tion, and retaining the smallest z magnetization at each point. After the sensitive
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slice was computed, Fts(x) was calculated using

Fts(x) = ρM0δV
∑
j

(1−mz(rj))G(rj) (3.15)

where ρ = 2.41×1025 m−3 is the spin number density, M0 is the Curie law magnetic

moment of one spin, δV is the volume of one voxel, mz(rj) is the reduced z

magnetization, G(rj) = ∂Bz(rj)/∂x is the first derivative of the tip field, and the

sum is taken over the entire sample mesh. To perform the integral in Eq. 3.6, Fts(x)

should be evaluated for x = x0p cosφ where 0 ≥ φ ≥ 2π. However, evaluating

Eq. 3.15 is expensive because G(rj) must be re-evaluated for each x value and j

runs to 41.4 million here. To minimize the cost, the symmetry of the cosine function

and the sensitive slice can be used to calculate Fts(x) for an entire cantilever cycle

by only evaluating Eq. 3.15 over 1/4-cycle. For these simulations, the integrand

in Eq. 3.6 was approximated using 41 points, from 11 evaluations of Eq. 3.15 and

the integral approximated using the trapezoid rule.

The two simulated signals in Fig. 3.9 are very nearly identical. Although the

peak heights between the simulations are slightly different, the overall size and

shape of the simulation has not changed and does not improve upon the poor

agreement between theory and simulation in Fig. 3.6. To understand why the

lineshape changes only slightly, it will be instructive to consider the effective force

as a function of cantilever amplitude. Such a plot is shown in Fig. 3.10(a),4 for

an external field Bpeak = 0.6287 T, indicated by the arrow in Fig. 3.9(right). The

4There is an apparent change in the signal sign between the simulations plotted in Figs. 3.6
and 3.9 and the effective force curve shown in Fig. 3.10. In the experiment, we were not careful to
set the phase of the software lock-in amplifier which results in a sign ambiguity in the measured
signal. For the experiments described in Chapter 2, we resolved this ambiguity by comparison
to simulation. The first round of simulations for this experiment suffered from an error in
the calculation of G′ for a rectangular prism. Before the error was corrected, simulation and
experiment agreed with the measured signal phased as shown in Fig. 3.6. After the calculation
of G′ was corrected, the phase of the measured signal in Fig. 3.6 was not updated for Ref. 33
and I have kept the same phase here. However, the interpretation of Fig. 3.10(b-e) is unclear if
the phase is inverted.
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effective force curve is more complex than found for a single spin (Fig. 3.8), pri-

marily because the sensitive slice is not effectively a single dimensionless point.

Neglecting for a moment that the volume of the sensitive slice depends on the

cantilever amplitude, the initial slope of the effective force curve is approximately

the ∆k calculated using the small amplitude approximation (Eq. 3.4). The x0p

indicated by the left most open circle in Fig. 3.10(a) is approximately the same

as used in Fig. 3.9, and at that point the slope of the effective force curve is still

very similar to its value at x0p = 0 nm. Considering the results of Fig. 3.9, the

entire change in the slope of the effective force curve up to the first open circle in

Fig. 3.10(a) is accounted for by the change in the slice volume from the increas-

ing cantilever amplitude and does not represent a failure of the small amplitude

approximation. Although it was not clear a priori, for the parameters used in the

experiment described in this chapter, the small amplitude approximation holds.

At larger amplitudes the shape of effective force curve demonstrates several

initially puzzling features, such as a change in sign. To understand these features,

Fig. 3.10(b–e) are scale diagrams of the experiment showing the cantilever and

magnetic tip above the calculated sensitive slice; the cantilever amplitude is in-

dicated by the arrow. The points on the effective force curve, Fig. 3.10(a), that

correspond to the diagrams are shown with open circles. When the cantilever am-

plitude is smaller than the inner radius of the sensitive slice, rinner
slice , as in Fig. 3.10(b,

c), the effective force is negative and there is a net outward force on the cantilever.

At x0p = 197 nm, Fig. 3.10(c), the effective force peaks at ∆kx0p = −144.9 aN

and x0p < rinner
slice = 211 nm. As the cantilever amplitude is further increased the

net force decreases because of cancellation between regions of positive and nega-

tive G, until at x0p = 280 nm the effective force becomes zero and x0p ≈ rinner
slice .

Increasing the cantilever amplitude further to x0p = 296 nm, Fig. 3.10(e), moves
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in to the x0p > rinner
slice regime and the sign of the effective forces becomes posi-

tive. The effective force continues to be positive and grows nearly linearly until at

least x0p = 330 nm. Given our λ = 1310 nm interferometer and the scale factor,

c = 2.02, relating the observed deflection to the deflection at the cantilever tip,

x0p = cλ/8 = 330 nm is the largest experimentally accessible cantilever amplitude.

We have shown that the poor agreement between simulation and experiment

shown in Fig. 3.6 is not due to violating the small amplitude approximation used in

the simulation. However, there is another assumption in the simulation that held

for the experiments using a larger magnetic tip (Chapter 2) that may not hold

for the smaller magnetic tip used here. All of these simulations assume that the

steady-state Bloch equations are an adequate model for the spin magnetization.

One way that the assumption of steady-state might fail is if the spins do not

spend long enough in resonance to saturate. The thickness of the slice in resonance

at any moment is

∆xsat =
2π

γGT2

(3.16)

where γ is the gyromagnetic ratio, and T2 is the spin-spin relaxation time. When

the cantilever moves the spins needs to remain in the slice for a time Tsat to saturate.

The distance that the cantilever moves before the spins saturate, ∆xosc = vTsat,

where v is the cantilever velocity, should be much smaller than the thickness of

the resonant slice, ∆xosc � ∆xsat. Torrey has shown that the time required to

saturate the sample spins and reach steady-state is a complex function of the

resonance offset, ∆B, the magnitude of the transverse field, B1, and the sample

relaxation times, T1 and T2 [118]. In our experiment, ∆B depends both on time

and position, meaning that Tsat will vary across the slice. Additionally, the time

scale on which ∆B changes is the cantilever period, Tc ≈ 200 µs, which is only a
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Figure 3.10: (a) Effective force as a function of cantilever amplitude for model 3.
The simulation predicts that the effective force peaks at ∆kx0p = −144.9 aN at
x0p = 197 nm, passes through 0 at x0p = 280 nm and continues to grow linearly
until at least x0p = 330 nm. The simulation did not consider cantilever amplitudes
larger than 330 nm because they are not easily experimentally accessable, since the
interferometer begins to “fold-over” at larger amplitudes. The simulation points
are not equally spaced because of the finite size of the sample mesh. (b–e) Scale
diagrams of the simulated sensitive slices for four cantilever amplitudes, x0p =
42, 163, 197, and 296 nm. The overhanging nickel magnet is shown in white, the
silicon body of cantilever, dotted, the sample film, light gray and the sensitive
slice in black. The arrow indicates the cantilever’s position at either extrema of
its motion.
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factor of 5 shorter than T1. These complications in calculating Tsat aside, we can

estimate the importance of this effect by setting Tsat = T2. Using v = 2πf0x0p,

with f0 = 7374Hz, x0p = 40nm, and T2 = 500ns, we calculate ∆xosc = 1.0nm. We

will estimate the tip-field gradient using G = 1
3
µ0Msat/rtip, with µ0Msat = 0.6 T

and rtip = 50 nm. Using our estimate for G we find ∆xsat = 0.02 nm. Clearly,

∆xosc 6� ∆xsat and we predict that the steady-state Bloch equations are not a good

model for the spin magnetization in our experiment. Applying this inequality to the

experiment of Chapter 2, where we found excellent agreement between simulation

and experiment, we calculate ∆xosc = 1.0 nm and ∆xsat = 0.8 nm, which, given

the uncertainty in Tsat, satistifies the inequality.

Extending the simulation beyond the steady-state Bloch equations is difficult.

The simple approach of directly integrating the Bloch equations in the rotating

frame is computationally prohibitive for two reasons. Moving to the rotating frame

does not remove most or all of the time dependence from our experiment as it

does for traditional NMR because the large tip-field gradient means that ∆B is

large, spatially variable and time dependent. Secondly, the number of numerical

integrals required is too large. Rather than naively integrating, an analytical or

semi-analytical approximation is required. However, for the same reasons that

make directly integrating difficult, developing such an approximation is also dif-

ficult. Using a simple model, described in Appendix A, we could estimate that

B1 > 2.2 G will be required to saturate in an experiment using a the small mag-

netic tip.
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3.6 Conclusions

The work presented in this chapter conclusively demonstrates that careful engi-

neering of the cantilever’s leading edge can dramatically reduce the close approach

surface dissipation that it experiences when located a few nanometers above a sur-

face. Additionally, the close approach surface dissipation measured here is, to date,

the smallest ever experienced in a scanned probe experiment. Maintaining force

sensitivity while operating close to the surface is a necessary component for future

high sensitivity MRFM experiments. Using a small rtip ≈ 50 nm magnetic tip, as

will be required for rapid, routine detection of single electron spins, will require

operating with tip-sample separations of h < 50 nm—where without a carefully

designed cantilever tip the force sensitivity would be compromised by surface noise.

Although careful engineering of the cantilever’s leading edge was able to dra-

matically reduce the force noise, the frequency noise did not show similar im-

provement. The extremely large surface frequency noise experienced made the

force-gradient MRFM experiment described here difficult. We were obligated to

operate at a larger tip-sample separation than was ideal given rtip and still re-

quired five minutes of signal averaging per point. Because the surface frequency

noise probes the low frequency noise above the sample surface [64], there is little

reason to think that increasing f0 will reduce its effects. Indeed, experiments us-

ing silicon nanowires with resonant frequencies between 200 kHz and 1 MHz, that

experience ultralow dissipation of Γ ≈ 10−15 Ns/m still experience large surface

frequency noise [119].

The MRFM experiment presented here is the first ultrasensitive MRFM ex-

periment to use a batch-fabricated magnetic tip. All earlier “scanned-probe”

(i.e. magnet-on-cantilever) MRFM experiments have used micrometer-scale litho-
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graphically defined magnets [120] or magnetic tips that were affixed manually

[36, 39, 42, 53, 54] and whose diameters were limited to ∼ 150 nm by ion dam-

age from focussed-ion beam milling [39, 54, 55]. Although the highest sensitivity

MRFM experiment [35] placed the sample on the cantilever instead of the mag-

net, the 0.3 µm× 1.0 µm leading edge of the cantilever is a poor sample platform.

Requiring that the sample be prepared on the end of the fragile cantilever would

appear to preclude the study of a wide range of samples, such as functioning or-

ganic electronic devices or cyropreserved biomolecules and does not easily permit

in situ study of the sample by any other technique (e.g. FRET or SEM).

Unlike the experiment presented in Chapter 2, we were unable to quantitatively

simulate the MRFM signal measured here. Using classical perturbation theory we

demonstrated that the poor agreement between simulation and experiment was

not due to breakdown of the small amplitude approximation. However, the steady-

state Bloch equations appear to be a poor model for the spin magnetization in this

experiment; a computationally feasible model for the spin magnetization was not

identified. The measured frequency shift first appears at a much lower magnetic

field than can be explained using a uniformly magnetized rectangular prism made

of nickel. If the magnetic tip is not uniformly magnetized, changing to the hang

down geometry may be beneficial. In the hang down geometry the external field

is aligned with the easy magnetic axis of the magnetic tip where the coercive field,

Ba, is only Ba ≈ 2–20 mT rather than the Ba ≈ 0.3 T in the SPAM geometry

used here. Simulation of the MRFM signal and cantilever magnetometry indicate

there is a 10–20 nm thick magnetically dead layer on the magnetic tip. Analysis

of a identically prepared magnetic nanorod using scanning transmission electron

microscopy (STEM) and electron energy loss spectroscopy (EELS) [33, 63] confirm

the thickness and indicate that the dead layer is most likely nickel oxide, NiO, an
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antiferromagnet. The antiferromagnetic layer is another potential explanation for

the non-uniform magnetization state of the magnetic tip.
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CHAPTER 4

EVADING SURFACE AND DETECTOR NOISE IN

MEASUREMENTS OF FORCE GRADIENTS

4.1 Introduction

Many precision measurements rely on registering a signal of interest as a change in

the amplitude or frequency of an oscillator. In theory, the ultimate precision of such

measurements is limited by quantum-mechanical measurement noise; in practice,

the precision achievable in an oscillator measurement is often limited by thermo-

mechanical position fluctuations [38, 75], detector noise [38], or environmental

fluctuations [31, 87, 112]. If one is using the oscillator to detect a time-varying

force, then the requirements for achieving thermally-limited or quantum-limited

sensitivity can be relaxed by using parametric amplification [121–123] to raise

both the displacement signal and the oscillator’s position-fluctuation noise above

the detector’s noise floor. Here we propose and demonstrate using parametric

amplification to evade both detector and surface frequency noise when using a

cantilever to detect a force-gradient signal [37].

Forces acting on microcantilevers are routinely measured at the thermo-mechanical

limit, where the smallest detectable force is set by the force fluctuations, PF =

4kbT Γ, giving rise to the friction Γ experienced by the oscillator. Given the finite

sensitivity of displacement sensors, however, achieving thermally-limited sensitiv-

ity in a force measurement usually requires modulating the signal force at or near

the cantilever frequency, fc, where the resulting displacement is amplified by the

mechanical quality factor of the cantilever. In many cases, such modulation is

inconvenient or impossible for fc & 1kHz. In magnetic resonance force microscopy
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Figure 4.1: Power spectrum of cantilever frequency fluctuations with (blue and
green) and without (black) a modulated force-gradient signal present. Dashed-
dotted black line: surface noise. Dotted black line: thermal noise (P therm

δfc
=

2.8 × 10−7 Hz2/Hz). Dashed line: detector noise(P det
δx = (10 pm)2/Hz). Noise

at frequencies away from the signal peak in the blue and green traces has been
removed for clarity.

(MRFM), for example, force modulation at fc is often impossible because of the

sample’s unfavorable spin relaxation times [36, 42]. In electric force microscopy,

force detection is inconvenient because of the undesirably long natural response

time of the cantilever near resonance [38, 124] and the finite charging time of the

sample. These shortcomings are obviated by detecting the signal as a (slowly-

modulated) force gradient [36, 38, 42, 124], δk. In a force-gradient experiment, the

cantilever is driven into self-oscillation via positive feedback [38] and the (mod-

ulated) force-gradient signal shifts the instantaneous frequency of the cantilever,

δfc ≈ fc δk/2kc, where kc is the cantilever spring constant.

Achieving thermally-limited sensitivity in a force-gradient experiment remains

challenging, however. This is illustrated in Fig. 4.11, in which we plot the power

spectrum of cantilever frequency fluctuations seen in three representative magnetic

resonance force microscope experiments (detailed below). In the first experiment

(solid black line), the cantilever was brought to a height h = 30 nm above a

1Figures 4.1, 4.2, and 4.3 reprinted with permission from Moore et al. Appl. Phys. Lett. 97,
044105 (2010). Copyright 2010, American Institute of Physics.
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gold-coated surface, driven to a root-mean-square amplitude of xrms = 73 nm,

and the tip-sample potential adjusted to minimize tip charge and therefore fre-

quency noise. The observed frequency noise (solid black line) is a sum of three

contributions: 1) thermo-mechanical position fluctuations (dotted line) with power

spectrum P therm
δfc

= 4kbTΓ (fc/2kcxrms)
2, 2) detector noise (dashed line) having a

power spectrum P det
δfc

= P det
δx f

2/x2
rms, where P det

δx is the detector noise written as

an equivalent cantilever displacement fluctuation, and 3) surface noise (dot-dashed

line) P surf
δfc

(f) ∝ f−1 arising from uncompensated tip charge coupling to fluctuating

electric field gradients produced by the sample [112].

In the second and third experiments, the magnetization of unpaired electron

spins in the sample was modulated to create the force-gradient signal at 6.28 Hz

(blue line) and 100Hz (green line), respectively, in Fig. 4.1. We can see in the figure

that even though the modulation frequency was chosen optimally, the noise in the

6.28Hz experiment was nevertheless dominated by surface noise; consequently, the

observed signal-to-noise ratio S1/NS is smaller than the thermally-limited signal-

to-noise ratio S1/NT by a factor of 14. Modulating at 100 Hz does avoid surface

noise, but the noise is dominated instead by detector noise and the observed signal-

to-noise ratio is even worse: S2/ND is smaller than S2/NT by a factor of nearly

103.

To achieve a thermally-limited signal-to-noise ratio in this representative force-

gradient experiment would require modulating at a frequency fmod � 80 Hz and

operating with a detector having a position sensitivity of P det
δx � (390 fm)2/Hz,

26 times smaller than we currently achieve using optical fiber interferometry (P ≈

3µW). More sensitive displacement sensors exist, such as single electron transistors

[125, 126], atomic point contacts [127, 128] and high-finesse optical cavities [129].
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Although all of these can in principle be used to monitor the cantilever deflection,

all three present substantial integration challenges that currently preclude their

use in general scanned probe experiments. A similar optical fiber interferometer,

operating at much higher optical power (P > 1 mW) improves the attainable

position sensitivity to (2 fm)2/Hz [130]. However, operating with more than a few

microwatts of optical power is not compatible with operating at T = 4.2K and lower

temperatures require even smaller optical powers [131] to avoid cantilever heating.

Here we introduce a parametric amplification scheme that 1) is compatible with a

force-gradient measurement; 2) can be used with a modulated signal, allowing the

signal to evade the effect of surface frequency noise; and 3) converts a frequency

signal to an amplitude signal at fc, evading detector frequency noise. In contrast

with other applications of parametric amplification in which an externally supplied

force gradient amplifies a small force signal, here the signal of interest acts as the

amplifier.

4.2 Methods

As in previous work [36], a force-gradient signal was generated by interacting un-

paired electron spins in a gold-coated film of TEMPAMINE with a high-compliance

magnetic tipped cantilever. Experiments were carried out in vacuum (P = 10−6mbar)

and at cryogenic temperatures (T = 8 K). The cantilever had fc = 4829 Hz,

kc = 7.8×10−4 N/m, a mechanical quality factor Q = 3.8×104, and a nickel tip of

radius r = 2 µm. A (swept) magnetic field of B0 = 0.50 T to 0.85 T was applied to

polarize the sample spins and a pulsed 17.28 GHz transverse magnetic field from

a half-wave microstripline resonator was applied to saturate sample spins. Spin

magnetization µz in the sample interacted with the magnetic field from the mag-
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netic tip to create a force gradient, ∆kspin, which shifted the resonance frequency

of the cantilever [36, 42]:

∆kspin =
∑
j

µz,j∂
2Btip

z (rj)/∂x
2 (4.1)

where the sum is over all spins in resonance at the given applied field. A small

potential, VDC ≈ 1 V, was applied between the cantilever and the gold sample

coating to control the charge on the cantilever tip. The cantilever was driven

below resonance at a frequency fd = 48fc/49 = 4730 Hz by applying an oscillating

voltage VAC = 33 Vrms from a waveform generator (Agilent 33250A) to a nearby

wire. The force applied to the cantilever from the drive wire is

Fwire(t) =
1

2
C ′ (VDC +

√
2 VAC cos (2πfdt))

2 (4.2)

where C ′ = ∂C/∂x is the derivative of the wire-cantilever capacitance with re-

spect to the direction of cantilever motion. The resulting amplitude of motion at

frequency fd,

xd =
χ(fd)

kc
Fd

≈ C ′VDCVAC
χ(fd)

kc
, (4.3)

with χ(fd) ≈ (1 − f 2
d/f

2
c )−1 the susceptibility and Fd the component of Fwire

oscillating at fd; xd was 99 nm for experiments here. During the experiment, the

effective Q of the cantilever was reduced to Qeff = 3×103, using negative feedback

applied by a piezo at the cantilever base [132]. The sample spin magnetization,

µz, was modulated at a frequency fp = fc/49 = fd/48 = 98.55 Hz by pulsing the

microwave field in synchrony with the cantilever motion [36].
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4.3 Results

The equation of motion governing the cantilever displacement x is

ẍ+
ωc
Qeff

ẋ+ ω2
cx+

ω2
c

√
2δkspin cos (ωpt)

kc
x =

ω2
c

√
2Fd

kc
eiωdt (4.4)

where we have expressed frequencies in angular units, ωp = ωc − ωd and δkspin =
√

2∆kspin/π includes only the first Fourier component of the pulse modulation. We

look for a solution of the form

x(t) =
∞∑

n=−∞

ane
i(nωp+ωd)t (4.5)

and are particularly interested in two coefficients: a0/
√

2 = xd and a1/
√

2 ≡

δxspin, the amplitude of the spin-induced oscillation at the cantilever’s resonance

frequency. Inserting Eq. 4.5 into Eq. 4.4, passing the time derivatives into the sum,

and rearranging we find

∞∑
n=−∞

ei(nωp+ωd)t

[
ω2
c

√
2δkspin

2kc
an+1 +

{
−(nωp + ωd)

2 +
i(nωp + ωd)

Qeff

+ ω2
c

}
an

+
ω2
c

√
2δkspin

2kc
an−1

]
=
ω2
c

√
2Fd
kc

eiωdt. (4.6)

This sum leads to an infinite set of coupled equations for the coefficients {an}. The

coupled equations may be written as a matrix where the matrix is tridiagonal. If we

approximate the infinite matrix by just the 2×2 matrix containing the coefficients

we are interested in−ω2
d + iωcωd

Qeff
+ ω2

c
ω2
c

√
2δkspin

2kc

ω2
c

√
2δkspin

2kc

iω2
c

Qeff


 √

2xd
√

2δxspin

 =


√

2Fd

kc

0

 , (4.7)

inverting we find, in the limit Qeff � 1,

δxspin =
i
√

2Qeffxd

2kc
δkspin. (4.8)
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Figure 4.2: Power spectral density of cantilever motion: (a) thermo-mechanical
displacement fluctuations; (b) with negative feedback active while the cantilever
was driven at a frequency fd = fc−fp = 4730Hz; and (c) identical condition to (b),
but with a microwave field pulsed at fp = 98.55 Hz. Conditions: B0 = 0.5925 T,
h = 200 nm.

The central prediction of Eq. 4.4 through Eq. 4.8 is that the spin-induced

spring constant modulation δkspin at frequency fp acts to up-convert some of the

oscillation at frequency fd to an oscillation at frequency fc. The data in Fig. 4.2

verify this prediction. For reference, Fig. 4.2(a) shows the power spectrum of

thermo-mechanical motion of the nascent cantilever. In Figure 4.2(b) we see the

thermo-mechanical motion peak near 4829 Hz broadened by negative feedback

and, in addition, a large peak near 4730 Hz due to the applied drive. In Fig. 4.2(c)

the microwaves have been turned on and an additional narrow peak can be seen,

near 4829 Hz, on top of the damped thermo-mechanical motion. This narrow peak

demonstrates the up-conversion of a force-gradient frequency signal at fp to an

amplitude signal at fc.

We next demonstrated that our parametric up-conversion technique was effec-

tive at evading detector noise, allowing us to modulate fast enough to also avoid

surface noise. Figure 4.3(a) is a plot, versus external magnetic field, of the Fourier

component at fp = 6.28 Hz of the spin-induced cantilever frequency shift. This
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Figure 4.3: Cantilever magnetic resonance recorded via modulated force-gradient
detection and parametric up-conversion amplitude detection. (a) Optimal
frequency-shift measurement (fp = 6.28 Hz, RMS amplitude 99 nm, and a back-
ground of −14.8 mHz subtracted). (b) Surface-noise evading frequency shift mea-
surement (fp = 100.57Hz but otherwise identical to (a)). (c) Detection of magnetic
resonance via parametric up-conversion of a frequency-shift signal (open circles,
fp = 98.55 Hz and a 0.53 nm background subtracted.) The blue line is the signal
predicted from Eq. 4.8 and the frequency-shift signal in (a), scaled to account for
the difference in modulation frequencies[37, Supplemental Materials] (scale factor
= 0.70). Conditions: 2.5 mT/pt field step and detection bandwidth b = 1 Hz.
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modulation rate was chosen to minimize the frequency noise due to the surface

and the detector (Fig. 4.1). The shape of the resulting magnetic resonance signal

arises from considering that spins are in resonance with the sum of the tip field and

the external field and weighting each spin in resonance by the second derivative

of the tip field ∂2Btip
z (rj)/∂x

2 at the location rj of each spin [36]. Increasing the

modulation rate to fp = 100.57 Hz, so that surface frequency noise will no longer

affect the measurement, does not improve the signal-to-noise (4.3(b)). This is as

expected given the large detector noise apparent at f = 100 Hz in Fig. 4.1.

Using a spin modulation rate of fp = 98.55Hz and the parametric up-conversion

scheme described above, in contrast, succeeds in evading surface noise. The up-

converted amplitude experiment, Fig. 4.3(c), has a signal-to-noise ratio equivalent

to that seen in the optimal frequency-shift experiment, Fig. 4.3(a). The observed

signal (circles) agrees quantitatively with the signal predicted (line) using Eq. 4.8,

calculated using the observed frequency-shift signal in Fig. 4.3(a), xd, and Qeff as

inputs.

4.4 Discussion

Given the power spectrum of frequency fluctuations observed in Fig. 4.1, we ini-

tially expected the up-conversion experiment to have a signal-to-noise closer to

the thermo-mechanical limit (S2/NT in Fig. 4.1). We found, however, that the

signal-to-noise in the up-conversion experiment depended critically on the quality

of the sine wave used to drive the cantilever off-resonance at fd. To explain this

finding, we calculated the power spectrum Pδxn(ωc) of cantilever amplitude noise

arising from voltage fluctuations in the drive source by adding a voltage-noise term,
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δVn(t), to Eq. 4.2. Voltage fluctuations will be a negligible source of noise when

Pδxn(ωc)� P therm
δx (ωc), the power spectral density of cantilever thermo-mechanical

fluctuations. Meeting this condition requires a source with noise voltage power

spectrum that satisfies

4kbTΓ|χ(fd)|2

k2
cx

2
d

� PδVn(ωc)

V 2
AC

+
PδVn(ωc + ωd)

2V 2
DC

+
PδVn(ωc − ωd)

2V 2
DC

. (4.9)

We conclude that the drive oscillator will contribute negligibly to cantilever posi-

tion fluctuations at resonance if its voltage amplitude noise is much smaller than

−97 dBc/Hz at fc = 4829 Hz and much smaller than −125 dBc/Hz at 9559 Hz and

98.55 Hz. Although the amplitude noise for our untuned audio-frequency drive

oscillator is unspecified, we note that this level of amplitude noise is challenging

to achieve even with a high-Q tuned radiofrequency oscillator.

4.5 Conclusion

In conclusion, we have introduced an approach for detecting minute force gradi-

ents acting on an harmonic oscillator and have demonstrated that the approach

enables the measurement to evade surface- and detector frequency noise. We have

thus achieved a similar result to Budakian, et al. [133], but without the need to

modulate spin magnetization at fc and in an experiment which is conceptually

simpler, easier to implement, and applicable to other forms of scanned probe mi-

croscopy beyond MRFM. Calculations indicate that further improvements in the

electrical noise in the drive oscillator should enable the technique to better ap-

proach thermally-limited sensitivity. Although we have chosen to demonstrate

this technique using magnetic resonance force microscopy, we believe the approach

is generally applicable to any oscillator force-gradient measurement.
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CHAPTER 5

CANTILEVER TORQUE MAGNETOMETRY OF THE IN-PLANE

TO OUT-OF-PLANE TRANSITION IN INDIVIDUAL NICKEL

NANORODS

5.1 Introduction

Quantifying both the average moment and magnetic fluctuations of individual

nanometer-scale ferromagnets is critically important for developing stable high-

density recording media [134–137], sensitive magnetoresistive heads and spin-based

electronic devices [138], and pushing magnetic resonance imaging to atomic reso-

lution via mechanical detection [35, 36, 61]. Magnetization fluctuations in individ-

ual sub-micron ferromagnets have been detected through voltage and current noise

measurements [139], SQUID magnetometry [140], magnetic force microscopy [141],

and, at record sensitivity, by frequency-shift torque magnetometry [29, 56, 57, 142].

The highest-sensitivity cantilever magnetometry studies to date have employed

high-compliance cantilevers [51, 52] to examine in-plane switching of individual

magnetic nanorods [56, 57]. Here we present a cantilever magnetometry study

of in-plane to out-of-plane magnetization switching and fluctuations in a nickel

nanorod at low temperature. We observe multiple sharp, simultaneous transitions

in cantilever frequency, quality factor, and frequency jitter associated with indi-

vidual switching events in the nanorod not seen in previous in-plane cantilever

magnetometry experiments.
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Figure 5.1: Relative orientation of cantilever, nickel nanorod tip, and applied mag-
netic field µ0H for (a) hard-axis and (b) easy-axis cantilever magnetometry ex-
periments. The cantilever oscillates in the z direction. When modeling the tip at
high field as a uniformly magnetized particle, we will treat the tip magnetization,
M , as oriented in the y-z plane and inclined at an angle θm with respect to the
nanorod’s easy axis. (c) Scanning electron micrograph of cantilever C1’s leading
edge; scale bar = 200 nm. (d) Bright-field scanning transmission electron micro-
graph of a nanorod fabricated to overhang the cantilever’s leading edge; scale bar
= 50 nm.

5.2 Methods

A schematic of the experiment is shown in Fig. 5.1(a). Nickel nanorods were

fabricated near the end of an attonewton-sensitivity cantilever, as described be-

low. The external swept magnetic field, H, points through the thickness of the

cantilever and, as the field is increased, the nanorod’s magnetic moment switches

from in-plane to out-of-plane. As a control, we also examined in-plane switching,

Fig. 5.1(b), with the magnetic field aligned with the long axis of the cantilever and

nanorod.

Cantilevers (L = 200 µm long, 4 µm wide, and 0.34 µm thick) were fabricated

from a single crystal silicon-on-insulator wafer [33, 52]. Cantilever parameters are

given in Table 5.1. For cantilevers C1–C3 a single nickel nanorod was fabricated
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at the end of each cantilever using e-beam patterning and liftoff; 5 nm of Cr was

evaporated as an adhesion layer, followed by 50 or 90 nm of Ni, both deposited

at 0.25 nm/s. The resulting nickel nanorods were 1500 nm long, 160 to 200 nm

wide, and 50 or 90 nm thick. A scanning electron microscope (SEM) image of the

leading edge of a representative cantilever is shown in Fig. 5.1(c). For cantilever C4

the nickel nanorod was fabricated separately on a freestanding silicon microchip

using similar e-beam pattering and liftoff. The tip of the microchip supporting

the nanorod was subsequently removed from the substrate via focussed-ion beam

milling and attached to a bare cantilever using focussed-ion beam deposition of

platinum [109]. A separate nanorod with dimensions 1500 nm× 150 nm× 100 nm

was prepared for analysis by scanning transmisson electron microscopy (STEM)

and electron energy-loss spectroscopy (EELS) by underetching the silicon at the

cantilever’s leading edge [33]. This nanorod was found to have an oxide-rich/nickel-

poor coating 15 to 20 nm thick (EELS; data not shown, see Ref. 33) and was

polycrystalline with grain sizes in the 20 to 40 nm range (STEM image; Fig. 5.1(d)).

Cantilever magnetometry experiments were performed at 4.2 K in high vacuum,

as described in Ref. 57. Cantilever deflection was observed with a temperature-

tuned 1310 nm optical fiber interferometer [71]. The cantilever deflection signal

was sent to an analog gain-controlled positive feedback circuit [38] whose output

excited a piezoelectric crystal located near the cantilever base. The phase and

gain of the feedback loop was adjusted to drive the cantilever into self oscillation

at a zero-to-peak amplitude of zc = 134 nm (except where noted). A software

frequency demodulator (Ref. 64, Supporting Information) was used to determine

the instantaneous cantilever frequency from a record of the cantilever deflection

versus time, from which the average cantilever frequency was obtained and the

frequency-fluctuation power spectrum was computed. Spring constant shifts were
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calculated from observed frequency shifts using ∆k = 2k ∆f/fc. The gain of the

positive feedback loop was controlled using a software PI loop and the instanta-

neous gain used to infer the cantilever quality factor, Q, from which the dissipation

was calculated using Γ = k/2πfcQ.

5.3 Results

The results of a representative easy-axis magnetometry control experiment is shown

in Fig. 5.2 for cantilever C1. The observed coercive field of 2 to 20mT is consistent

with in-plane switching via either a curling mechanism [143, 144] or domain wall

nucleation and depinning [145]. Above the coercive field the ∆k was fit to[29, 56]

∆k =
BsatV

µ0L2
eff

BBa

B +Ba

(5.1)

using the known tip volume V , applied magnetic field B = µ0H, effective length for

the first flexural mode Leff = L/1.377, and an anisotropy field of Ba = Bsat ∆Nzy

with Bsat/µ0 the saturation magnetization and ∆Nzy = Nz−Ny the difference in z

and y axis demagnetization factors. The best-fit values are shown in Table 5.1. The

measured values of Bsat and ∆N compare reasonably well with the Bsat = 0.60 T

and ∆N = 0.50 expected for a high aspect ratio nickel rod.

In addition to measuring the cantilever spring constant shift, the magnetic field

dependent dissipation and frequency jitter were also measured and are shown in

Fig. 5.2 for cantilever C1. Although the cantilever dissipation, Fig. 5.2(b), does

change with the magnetic field, the magnitude of the shift is similar to that ex-

perienced by a bare silicon cantilever (data not shown) as has been previously

observed for slightly larger nickel tips [57]. The frequency jitter, Fig. 5.2(c), in

a bandwidth b = 15 Hz shows no dependence on magnetic field. The magnitude
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Figure 5.2: Cantilever magnetometry data taken with the field applied along the
easy-axis direction of cantilever C1 (y, Fig. 5.1(b)), sweeping from −4 T to +4 T.
(a) Plot of the fractional cantilever spring constant shift (solid line) and a fit to
Eq. 5.1 used to extract the magnet properties (dashed line), with inset showing
magnetization switching with a coercive field of ∼ 5 mT. (b) The cantilever dis-
sipation Γ is slightly field dependent, however for a magnet of this size, the field
induced dissipation is no larger than that experienced by a cantilever without a
magnetic tip. (c) The cantilever root-mean-square frequency fluctuations measured
in a 15 Hz bandwidth.
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of the observed frequency jitter can be entirely accounted for by considering two

sources of frequency fluctuations. The first source of frequency fluctuations is the

thermomechanical position fluctuations of the cantilever which give rise to a white

frequency fluctuation spectral density, P therm
δf (f) = 4.8 × 10−7 Hz2/Hz. Secondly,

the noise floor of the displacement sensor appears as frequency fluctuations pro-

portional to the square of the offset frequency, P det
δf (f) = 5.3×10−8 f 2 Hz2/Hz [38].

The calculated jitter,

J =

∫ b

0

(P therm
δf (f) + P det

δf (f)) df = 6.7× 10−5 Hz2 (5.2)

agrees quite well with 8× 10−5 Hz2 jitter apparent in Fig. 5.2(c).

The results of a representative hard-axis magnetometry experiment from can-

tilever C3 are shown in Fig. 5.3. We see that the hard-axis experiment shows

numerous, simultaneous transitions in the cantilever spring constant, dissipation

and frequency jitter which are entirely absent in the easy-axis data of Fig. 5.2. For

the hard-axis experiment at high field (B ≥ Ba) we fit the spring constant shift to

∆k = −BsatV

µ0L2
eff

BBa

(B −Ba)
(5.3)

(see below). The results of the fits to this model are shown in Table 5.1 and are in

reasonable agreement with the results of the easy-axis experiments. However, the

extracted values for ∆Nzy are uniformly smaller than those found in the easy-axis

experiment and the values obtained by Aharoni for a rectangular prism[146].

The ∆k measured in the hard-axis experiment shows multiple abrupt changes

near 0.3 T. The biggest ∆k dip is more than ten times larger in magnitude than

any shift seen in an easy-axis magnetometry experiment. Moreover, the dips are

in many cases only a few mT wide. Some of the ∆k peaks show sharp edges

(Fig. 5.3, right) and exhibit little or no associated dissipation and jitter; we assign
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Figure 5.3: Cantilever magnetometry data taken with the field applied along the
hard-axis direction of cantilever C3 (z, Fig 5.1(a)), sweeping from −0.6 to +0.6 T.
Left: Fractional cantilever frequency shift (top) and cantilever dissipation Γ (mid-
dle), both showing large discontinuous transitions. Cantilever root-mean-square
frequency fluctuation measured in a 15 Hz bandwidth (bottom); note the logarith-
mic scale and the 10,000-fold variation. Right: expanded view of two transitions.
The magnetic field was swept at a rate of 0.1 to 0.2 mT s−1 and the cantilever
frequency, dissipation, and jitter were measured every 0.5 s.
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Figure 5.4: Cantilever magnetometry data from cantilever C3, with the magnetic
field applied along the hard-axis. The magnetic field was swept from 0.15 T to
0.35 T, with the remainder of the hysteresis loop swept between sequential, (a) to
(c), runs. The depth of the ∆k dips show run to run variability. For example, the
depth of the sharp dip near µ0H = 0.17 T grows from (a) ∆k = −357 ppm to (b)
−519ppm and (c) −666ppm. Other features, such as the bump near µ0H = 0.322T
in (a) and (b) disappear entirely in (c).

these peaks to domain wall depinning (Barkhausen noise). Most ∆k dips did show

a simultaneous peak in dissipation.

If the hysteresis loop is run repeatedly, the ∆k curve shows some run to run

variability in dip depth and width, as show in Fig. 5.4. The location of each

individual dip is relatively robust from run to run, as long as the sweep rate is

unchanged, but does exhibit variability at a level below what is easily discerned

from the plot. Attempts to stop the field sweep on one of the ∆k dips where

unsuccessful, in part due to the movement of the ∆k dips. Additionally, our

current experimental apparatus cannot sweep slower than 0.02 mT/s which does

not allow our software frequency demodulator to detect the dip fast enough to stop
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the sweep before the dip has been passed.

To rule out in-plane switching or domain motion caused by a small in-plane

component of the applied field as the source of the ∆k dips, the experiment of

Fig. 5.3 was reproduced with the applied field angle intentionally misaligned from

the hard axis by 2◦ and 4◦, Fig. 5.5. This range of angles is much larger than our

estimated uncertainty in angle of ±0.5◦. If the field is misaligned from the hard

axis by an amount θ the component along the easy axis will be B⊥ = B sin θ, which

for small θ is approximately Bθ. If the ∆k dips were due to in-plane switching we

would expect the magnetization to switch at a field that makes B⊥ = Ba. This

condition is met when the external field is

B =
Ba

sin θ
≈ Ba

θ
. (5.4)

However, Fig. 5.5 clearly shows that although the observed ∆k dips were smaller

with the field misaligned, they were still present and centered near Ba = 0.3 T,

inconsistent with in-plane switching caused by the small in-plane component of the

external field. We also note that moving from 0◦ to 2◦ of misalignment eliminated

most of the smaller Barkhausen events.

In Fig. 5.3 we identified two kinds of ∆k features distinguishable by the presence

or lack of increased dissipation. Fig. 5.6 demonstrates that these two types of

features are also distinguishable by their dependence on cantilever amplitude. In

the left plot of Fig. 5.6 one feature of each type is visible, a small step in the ∆k at

higher field that does not show a corresponding increase in cantilever dissipation

and a large ∆k dip that does have an accompanying increasing in dissipation. As

shown in Fig. 5.6 the depth of the dissipation accompanied ∆k dips are strongly

dependent on the cantilever amplitude, while the step-like Barkhausen features

showed no amplitude dependence.
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Figure 5.5: Cantilever magnetometry data from cantilever C4 taken with the field
applied along the magnetic hard axis, sweeping from −0.6 T to +0.6 T for three
different nominal angles between the hard axis and the applied field, (a) 0◦, (b) 2◦

and (c) 4◦.
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To investigate this amplitude dependence, one would ideally sweep repeatedly

through the peak, stepping the cantilever’s amplitude between each sweep and

holding it constant through a given sweep using a feedback loop. The ideal ex-

periment is problematic because controlling the amplitude of a high-Q oscillator

via feedback requires a relatively small feedback bandwidth [147]. Because of the

limited field-sweep rates available in our experiment, the cantilever dissipation,

and thus the cantilever amplitude, is changing more rapidly than our feedback

loop can accommodate. To avoid this feedback problem we instead swept through

the frequency dip without a feedback loop controlling the cantilever amplitude

and instead used a fixed drive voltage. To generate the data shown in the right

plot of Fig. 5.6 we systematically varied the drive voltage, measured the cantilever

amplitude and frequency simultaneously, and plotted the resulting peak frequency

shift as a function of the cantilever amplitude.

Surprisingly, the ∆k dip is largest for small cantilever amplitudes and decreases

with increasing cantilever amplitude. This is further evidence that these features

are not a result of switching due to the small in-plane component of the mag-

netic field since the in-plane component is directly proportional to the cantilever

amplitude.

5.4 Analysis and Discussion

5.4.1 Spring Constant Shift

In Section 5.3 the spring constant shift from both easy and hard-axis experiments

was fit to extract the magnetic moment and anisotropy constant for the magnetic

110



Figure 5.6: Left: Fractional cantilever spring constant shift versus field for can-
tilever amplitudes ranging from 250 nm (upper trace) to 50 nm (lower trace) for
cantilever C2. The data has been offset vertically for clarity. Because the can-
tilever dissipation is changing too rapidly for the feedback loop to respond in this
experiment, a fixed drive amplitude was applied and the magnetic field was swept.
Right: Peak cantilever spring constant shift versus cantilever amplitude. The peak
shift ∆∆k was computed two ways, Method 1 (circles) and Method 2 (squares),
as described in the text. The lines are fits to Eq. 5.24; see text for discussion.

particle. The equations used for the fits were derived from the uniform rotation or

Stoner-Wolhfarth model [148], the simplest classical model that predicts hysteresis.

The model assumes that the exchange interaction holds all of the microscopic

magnetic moments strictly parallel and only the direction of the magnetic moment

is free to change. As indicated above, magnetization switching in nickel nanorods of

the size studied here is expected to occur via either a curling mechanism[143, 144]

or domain wall nucleation and depinning [145] rather than via uniform rotation.

However, above the switching field the magnetization is aligned with the external

magnetic field and only undergoes small angular deviations (θmax ≈ 0.05◦) due to

the motion of the cantilever. Uniform rotation should be a good model for the

magnetization dynamics of our magnetic nanorods in this limit.

The energy of a single domain particle with uniaxial anisotropy is

U(B, θ) = −µB cos(θ − θm) +
µ0µ

2

2V

(
Ny cos2 θm +Nz sin2 θm

)
(5.5)

= −µB cos(θ − θm)− µBa

2
cos2 θm +

µBa

2

Nz

Nz −Ny

(5.6)
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where µ and V are the magnetic moment and volume of the particle, respectively,

B is the magnitude of the applied magnetic field, Ba = µ0µ(Nz − Ny)/V is the

anisotropy field with Ny and Nz the easy and hard-axis demagnetization factors,

respectively. The applied magnetic field is oriented at an angle θ and the magnetic

moment is oriented at an angle θm both relative to the particle’s long (e.g. easy)

axis. The third term in Eq. 5.6 is a constant and for our purposes can be neglected.

It will be more convenient to rewrite Eq. 5.6 in a unitless form by dividing through

by U0 = µBa/2, and defining the reduced external field, α = B/Ba,

Um =
U

U0

= −2α cos(θ − θm)− cos2 θm. (5.7)

For the easy-axis experiment the external magnetic field is aligned with the

magnetic particle’s easy-axis and θ = 0. As the cantilever displaces by an amount

δz from its equilibrium position the angle that the external field makes with the

easy axis will change by an amount δθ = δz/Leff and we assume that the mag-

netization reorients continuously to minimize U . Substituting θ = 0 + δθ and

θm = 0+δθm into Eq. 5.7, minimizing with respect to δθm in the limit that δθ � 1

and δθm � 1 we find

− 2α(δθ − δθm) + 2θm = 0 (5.8)

which can be solved for the value of δθm that minimizes the energy for a given δθ.

This optimal δθm is

δθopt
m =

α

α + 1
δθ. (5.9)

As the cantilever rotates, the nanorod interacts with the external field to pro-

duce a restoring torque on the cantilever, τx = −∂U/∂δθ that acts to curl the

end of the cantilever. This torque is kinematically equivalently to a point force

Fz = τx/Leff acting on the tip of the cantilever. We observe a frequency shift which
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requires Fz to be position dependent. Approximating Fz by the first position de-

pendent term of its Taylor expansion about the equilibrium position, δz = 0, we

have Fx ≈ (∂Fz/∂δz)δz (Eq. 3.5). We recognize this as having the same form as

Hooke’s Law and define kmag ≡ −∂Fz/∂δz to be the magnetic contribution to the

cantilever’s spring constant. Using the definitions for Fz, τx and δθ, kmag is related

to the optimized energy of the magnetic nanorod by

kmag =
U0

L2
eff

∂2 Uopt
m

∂ δθ2

∣∣∣∣
δθ=δθeq

. (5.10)

Inserting Eq. 5.9 into Eq. 5.7 and applying Eq. 5.10 we find

kmag =
µ

L2
eff

BBa

B +Ba

(5.11)

for the magnetic contribution to the spring constant in the easy-axis case, in agree-

ment with previous work [29, 56, 149].

In the hard-axis experiment, the external magnetic field is aligned with the

particle’s hard axis and θ = π/2. As indicated above, the Stoner-Wolhfarth model

only applies to our system in the limit θm � 1, a condition not met until the

external field has become strong enough to align the magnetization along the field.

This condition occurs in the hard-axis experiment when B ≈ Ba. Above B = Ba

(or α = 1), θ = π/2 + δθ and θm = π/2 + δθm. Making these substitutions, Eq. 5.7

becomes

Um = −2α cos(δθ − δθm)− sin2 θm. (5.12)

As above, minimizing this expression with respect to δθm yields the optimized

magnetization angle

δθopt
m =

α

α− 1
δθ. (5.13)

Inserting this back into Eq. 5.12 and applying Eq. 5.10,

kmag = − µ

L2
eff

BBa

B −Ba

(5.14)
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for the magnetic contribution to the spring constant at high field.

Although we know that the uniform rotation model does not apply to the

nanorods studied here below B = Ba, an expression for magnetic contribution to

the spring constant in this limit can be derived. Using the same techniques as

above, we find

kmag =
µ

L2
eff

B2

Ba

. (5.15)

Eq. 5.15 predicts that at low field the cantilever’s spring constant would increase

with the square of the external field, while as shown in Fig. 5.3(a), we observe

the spring constant decreasing with roughly the square of the external field. This

disagreement is not suprising; we do not expect our particle to behave as a Stoner-

Wolhfarth particle at low field.

Earlier work by Miller et al. [142] studying much larger CoPt magnets using

cantilever-torque magnetometry observed a spring constant shift similar to the

envelope of the spring constant shift observed in Fig. 5.3(a). Miller et al. did not

observe any ∆k dips; however, the external field was changed in this experiment

by ∼ 0.1 T between measurements of ∆k. The features we observe occur over field

ranges covering only millitesla and we would not expect a much coarser field sweep

to be able to resolve them.

5.4.2 Amplitude Dependence

As the cantilever displaces by an amount z, the apparent angle of the applied

field experienced by the magnetic particle will change by δθ ≈ z/Leff. To model

the amplitude dependence of the cantilever frequency shift near the switching field

Bsw, let us take the view that the magnetization of a domain reorients continuously
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to minimize energy as the cantilever vibrates, and let us make the ansatz that the

energy of the domain is given by, for small angular displacements,

Um = −µdBsw cθ |δθ|m (5.16)

where µd is the magnetic moment of the domain, cθ is a constant of order one,

and the power m will be taken to be greater than zero. In writing Eq. 5.16 we

are neglecting hysteresis, for simplicity. The torque associated with this energy is

τx = −∂Um/∂ δθ. This torque is kinematically equivalent to a restoring force

Fz =
τx
Leff

= ±µdBsw cθ
Leff

(
z

Leff

)m−1

(5.17)

where the ± signifies that the sign of the force should be positive for z > 0 and

negative for z < 0. We use Hamilton-Jacobi perturbation theory to calculate the

perturbation to the cantilever spring constant ∆k resulting from the displacement-

dependent force[116] of Eq. 5.17:

∆k = − 2

z2
0p

〈Fz(t) z(t)〉period (5.18)

where z0p is the zero-to-peak cantilever amplitude and the 〈 · · · 〉 indicates a

temporal average over one cantilever period of duration T . Substituting z(t) =

z0p sin (2πt/T ), and using the fact that the perturbation is an antisymmetric func-

tion of the displacement,

∆k = −2cθµdBsw

z2
0p

(
z0p

Leff

)m [
2

T

∫ T/2

0

{
sin(

2πt

T
)

}m
dt

]
. (5.19)

The integral [ · · · ] in Eq. 5.19 is independent of T and can be carried out analyti-

cally in terms of the gamma function Γ. The result yields

∆k

k
= − cθµdBsw

kLmeff z
2−m
0p

4
√
π sec (mπ

2
)

Γ(1−m
2

) Γ(m
2

)
. (5.20)

The rightmost fraction in Eq. 5.20 is a slowly varying function of m. For m =

2, this equation reduces to ∆k/k = 2cθµdBsw/kL
2
eff — independent of cantilever

115



amplitude, as expected for a potential energy which depends quadratically on the

cantilever displacement. For m < 2, Eq. 5.20 predicts an amplitude-dependent

change in spring constant, in qualitative agreement with experiment.

If the domain acts as a Stoner-Wolhfarth particle, Eq. 5.7 can be used to predict

the values of cθ and m we would expect. Making the substitutions, θ = π/2 − δθ

and θm = π/2 − δθm into Eq. 5.7, setting α = 1 and calculating ∂Um/∂δθm = 0,

we find

0 = sin(δθ − δθm)− sin δθm cos δθm. (5.21)

Expanding this to third order in δθ and δθm produces a cubic equation, which can

be solved to find δθopt
m . However, δθ � 1 and the leading term of the solution,

δθopt
m = (2δθ)1/3 (5.22)

is a good approximation to the full solution in this limit. Inserting Eq. 5.22 into

Eq. 5.7, and expanding in a Taylor series about δθ = 0, the potential energy surface

at the critical field is

U0U
opt
m =

µdBa

2

(
−2− 3

22/3
δθ4/3

)
≈ −µdBa

3

25/3
δθ4/3. (5.23)

From Eq. 5.23, the Stoner-Wolhfarth model predicts cθ = 3/25/3 = 0.945 and

m = 4/3.

To analyze the spring-constant dips in Fig. 5.6(left), the depth of the dip was

inferred using two methods. In Method 1, the frequency at the bottom of the

dip was compared to the cantilever frequency at zero field, and the computed

frequency shift converted to an equivalent spring constant shift. In Method 2, in

order to account for the background shift arising from already-flipped domains,
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Table 5.2: Analysis of Fig. 5.6 data. The reported error bars represent a 95%
confidence interval.

value Method 1 Method 2 unit

κref 620± 36 401± 50 ppm
m 1.740± 0.053 1.52± 0.13 –
µd 4.4± 1.9 0.53± 0.53 10−15 A m2

Nd 1.3± 0.5 11± 11 –

the frequency shift at the bottom of the dip was compared to a frequency baseline

obtained by fitting the data to either side of the dip to a line (Fig. 5.6, left, dotted

line). The shifts computed by Methods 1 and 2 are plotting in Fig. 5.6(right) as

circles and squares, respectively.

Following Eq. 5.20, we fit the data of Fig. 5.6(right) to the power-law function

∆∆k

k
= −κref

(
zref

z0p

)2−m

(5.24)

with zref = 41.9 nm a reference amplitude and κref a prefactor representing the

relative spring constant shift at the reference amplitude. The domain magnetic

moment in Eq. 5.16 is computed from best-fit parameters using

µd =
κref k L

m
eff z

2−m
ref

cθBsw

Γ(1−m
2

) Γ(m
2

)

4
√
π sec (mπ

2
)
, (5.25)

taking cθ = 1 for simplicity. The standard error in the domain magnetic moment,

which depends on the error in both the prefactor and the power, is computed nu-

merically as σµd = ((∂µd/∂κref)
2σ2

κref
+ (∂µd/∂m)2σ2

m)1/2. The number of domains

in the tip, Nd, is computed by dividing the total tip magnetic moment reported

for cantilever C2 in Table 5.1 by µd.

Fitting results are presented in Table 5.2. The Method 1 data, when analyzed

in terms of the model of Eq. 5.20, give a domain magnetic moment which is too

large. The domain parameters extracted from the Method 2 data, in contrast,
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predict a number of domains (0 to 22) in good agreement with the total number

of frequency dips seen in Figs. 5.3 and 5.4. In spite of the large uncertainty in the

domain magnetic moment inferred from the Method 2 data, we can nevertheless

conclude that the domains giving rise to the frequency dips seen in 5.3 and 5.4 are

well described by Eq. 5.16 with m = 1.52 ± 0.13, in reasonable agreement with

m = 1.33 predicted from the Stoner-Wolhfarth model.

5.4.3 Dissipation

Field-dependent dissipation, Fig. 5.3(middle), in a cantilever magnetometry ex-

periment arises from transverse magnetization fluctuations [56, 57]. For a field

oriented as in Fig. 5.1(a), fluctuations in magnetization angle give rise to a fluctu-

ating x-axis torque δτx(t) = δµy(t) B. This torque is kinematically equivalent to

a fluctuating z-axis force of magnitude δFz(t) = δτx(t)/Leff. This force will lead

to a dissipation Γm = PδFz(fc)/4kbT with PδFz(f) the one-sided power spectrum

of force fluctuations and fc the cantilever frequency [56, 57]. It follows that the

nanorod’s contribution to the cantilever’s dissipation is

Γm =
B2

4kBTL2
eff

Pδµy(fc)

=
µ2B2

4kBTL2
eff

Pδθm(fc) (5.26)

where we have used δµy = µ sin δθm ≈ µ δθm. The existence of dissipation peaks

thus requires multiple domains having a magnetic potential energy function with

states of many different magnetization angles thermally populated near ∼ 0.3 T.

One such potential is shown in Fig. 5.7. In Fig. 5.7 we plot the potential energy

Um (Eq. 5.7) of a Stoner-Wolhfarth particle for increasing field applied along the

particle’s hard axis. The potential has two degenerate minima at angles θ±m =
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Figure 5.7: Potential energy of magnetization as a function of magnetization angle
θm. The field, which is applied along the z axis of Fig 5.1(a), increases from left
to right.

± arccos(α). The barrier between the minima is ∆Um = U0(1− α)2. This barrier

goes to zero at B = Ba.

We can use this uniform rotation model to derive a closed form expression for

the height of the dissipation peaks seen in Fig. 5.3(middle). Let us approximate

the angular fluctuations as arising from thermally-activated magnetization hops

between these two degenerate minima. For simplicity, we take the associated

correlation function to be

Cδθm(t) = (2 arccos(α))2e−t/τm (5.27)

where the hopping time is

τm = τ0e
∆Um/kBT (5.28)

and the inverse attempt frequency is τ0 ∼ 10−9 s. Computing Pδθm(f) by taking

the Fourier transform of Cδθm(t), we find for the peak dissipation

Γpk
m =

0.150√
− ln(2πfcτ0)

B2
satV∆Nzy

fcL2
effµ0

(
B2

satV∆Nzy

µ0kBT

)1/2

(5.29)

Eq. 5.29 predicts a Γpk
m ≈ 0.2 pN s/m for a single domain having a high aspect

ratio, ∆Nzy = 0.5 and a volume of V ∼ (30 nm)3. Performing this analysis on all

sharp ∆k dips, we estimate that approximately 3% of the nanorod’s volume gives

rise to the sharp, dissipation accompanied ∆k dips we observe.
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The original impetus for performing the hard-axis magnetometry experiment

was to probe the magnetization of the nanorod when magnetized out-of-plane. We

were interested in this because using a batch fabricated magnetic tip in the SPAM

geometry [29] requires magnetizing it along along one of its hard axes. However,

the point of using the SPAM geometry is that the tip-field interaction does not

change the spring constant or cause large field induced dissipation. Although this

is convenient experimentally, it also means the magnetization of the tip cannot

be probed in situ. Our ESR experiments take place near B = 0.6 T and we

were concerned that the magnetization of the nanorod would not be saturated.

Earlier work [56, 57] indicated that there are two regimes in which magnetization

fluctuations in the magnetic tip will not deleteriously effect the spin relaxation

rates of the sample spins. One can operate with a tip made of a hard magnetic

material, such as samarium-cobalt, at low magnetic fields [56], as was done in the

single-spin experiment [28] or with a tip made from a soft magnetic material, such

as nickel, in a high magnetic field [57]. The experiment described in Chapter 3

using a nickel tip like those studied here took place at low field and magnetization

fluctuations effecting T1 were a concern.

Even though we cannot observe them, the magnetization dynamics that pro-

duce the ∆k dips and dissipation peaks still occur in the SPAM geometry. Instead

of calculating the size of the dissipation peak as above, it is useful to convert the

measured dissipation into a fluctuating magnetic field and ask how it will effect

spin relaxation in a nearby sample. At Bsw, the power spectral density of magnetic

moment fluctuations giving rise to a dissipation peak is thus

Pδµy(fc) =
4kbTL

2
eff

B2
sw

Γm. (5.30)

For a dissipation peak with Γm = 0.25×10−12Nsm−1, Bsw = 0.221T, and T = 4.2K,

we compute Pδµy(fc) = 2.6× 10−42 A2 m4 Hz−1. Modeling the fluctuating domain
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as a dipole, the resulting power spectral density of magnetic field fluctuations at a

distance r from the domain is

PδBy(fc) =
( µ0

π r3

)2

Pδµy(fc). (5.31)

At r = 220 nm, where the field from the dipole is estimated to be 0.20 T, we

calculate PBy(fc) = 3.6 × 10−12 T2 Hz−1. Since fc ∼ few kHz is similar to the

Rabi frequency in a magnetic resonance experiment, the magnetic fluctuations

underlying the dissipation peaks in Fig. 5.3 are at the right frequency to affect

T1ρ, the spin-lattice relaxation time in the rotating frame [57]. The associated

spin relaxation rate, γ2
jPBy with γj the gyromagnetic ratio, evaluates to 15 ms for

protons and 0.4ns for electrons. This calculation indicates that efficient relaxation

of sample spins in a magnetic resonance experiment could be induced by adjusting

the external field to coincide with one of the dissipation peaks in Fig. 5.3. The

dissipation peaks are only a few gauss wide, suggesting that rapid modulation of

sample relaxation times could be achieved.

5.4.4 Angle Dependence

Fig. 5.5 shows the relative spring constant change for three different angles between

the external magnetic field and the hard-axis of the nanorod. Although the δk dips

did not move from near 0.3 T, they did become much less deep as the field was

misaligned. To investigate the dependence of the ∆k depth on the external field

angle, we calculated the spring constant change numerically. Our procedure was

very similar to that used above—at given values of α and θ the value of θm that

minimized the energy was found by setting ∂Um/∂θm = 0 and locating the root

using bisection and Newton’s method, starting from the previous value of θm. The
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Figure 5.8: Numerical calculation of the relative spring constant change for can-
tilever C1. The numerical results are shown as open circles, and the analytic
results, Eqs. 5.14 and 5.15, shown as solid lines; the dotted line is a guide for the
eye. The numeric routine recovers the analytic results.

motion of the cantilever was included by letting θ range between π/2± zmax/Leff.

The force on the cantilever was calculated using Fz = −L−1
eff ∂Um/∂θ and the spring

constant change calculated using Hamiltonian-Jacobi perturbation theory.

As a first test of our numerical routine, we calculated the spring constant

change for cantilever C1 with the external magnetic field aligned with the hard

axis, θ = π/2. The results are plotted in Fig. 5.8; the numerical results are shown

as circles and Eqs. 5.14 and 5.15 shown as solid lines. Our numerical routine

recovers the analytic results derived above.

The calculated relative spring constant change is shown in Fig. 5.9, for the

external field aligned with the hard-axis and for four different misalignments, 0.01◦,

0.03◦, 0.05◦ and 2.00◦. The domain giving rise to the peak was taken to be nickel

with a volume V = (50nm)3 and difference in demagnetization factors ∆Nzy = 0.5.

The calculated δk depth is a much stronger function of misalignment angle that we

observe experimentally, dropping to only 38% after 0.05◦ of misalignment. With

2◦ of misalignment, the ∆k dip is nearly gone, reduced to 2% of its original value.
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Figure 5.9: Results of numerically calculating the depth of the ∆k dip with the
external field misaligned from θ = π/2 by (a) 0◦, (b) 0.01◦, (c) 0.03◦, (d) 0.05◦,
and (e) 2◦. The depth of the ∆k dip decreases rapidly with only small angular
misalignments, from an initial depth of −276.9 ppm in (a) to −257.2 ppm in (b),
to −205.3 ppm in (c), to −106.4 ppm in (d) and −5.4 ppm in (e). The sensitivity
to small misalignments is much stronger than we observe experimentally, as shown
in Fig. 5.5.

The dip depth is very a very sensitive function of angle in this model because

near the critical field (B = Ba) the magnetization is being coherently pumped

back and forth between the two minima by the motion of the cantilever. For a

cantilever amplitude, z0p = 131 nm, the nanorod only rotates by 0.05◦ and angular

misalignments on that order are all that is required to disrupt the magnetization

oscillation. Experimentally, we observe ∆k dips even at 4◦ of field misalignment.

We interpret this to mean that different domains produce the ∆k dips observed

at each field angle. This conclusion is reasonable given the above estimate that

the ∆k dips we observe are produced by between 0 and 22 domains. A second

corroborating estimate, from analysis of the dissipation data, is that the dissipation

peaks we observe account for only 3% of the total volume of the magnet. Our

numerical model assumes that the magnetization is restricted to the yz-plane;

extending the numerical model from modeling a prolate spheroid to a general

triaxial ellipsoid should be straight forward.
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5.5 Conclusions

In summary, we have observed dramatic changes in cantilever spring constant,

dissipation, and frequency jitter in a cantilever magnetometry study of in-plane

to out-of-plane magnetization switching in a single nickel nanorod. Many of these

features are robust toward angular deviations of up to a few degrees, and show

a strong dependence on cantilever amplitude. These findings are quite general,

having been observed for every nanorod tipped cantilever we have investigated to

date, spanning approximately two years and including extensive changes in the

cantilever and nanorod fabrication process during that time [62, 109].

We derived a model for the changes in the cantilever spring constant above

the anisotropy field by treating the nanorod as a Stoner-Wolhfarth particle, and

find reasonable agreement between the model and the experimental results. An

estimate for the active volume from the amplitude dependence of a single ∆k dip

is consistent with the presence of multiple dips, and the estimated active volume

is comparable to the grain size of our nanorods as estimated using STEM.

The existence of multiple weakly coupled volumes within the nanorod that

switch quasi-independently could be explained by the presence of crystalline do-

mains (Fig. 5.1(d)), spatial variations in the nickel thickness, or the templating of

magnetization by an antiferromagnetic nickel oxide coating. There is precedent for

observing magnetization switching in nickel nanorods via thermally-activated co-

herent rotation in magnetic force microscopy, [143] anisotropic magnetoresistance

[150], and SQUID [144] magnetometry. The grain size was much smaller in the

nickel films used in these prior studies, which may explain why they did not observe

switching via distinct intermediate states as seen here. Whatever the underlying

mechanism, the results of Fig. 5.3 suggest a new method for creating giant tunable
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magnetic field fluctuations and for mechanically detecting magnetic fields at high

sensitivity and nanoscale spatial resolution [35, 36, 61].
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APPENDIX A

B1 MAGNITUDE REQUIRED TO SATURATE USING THE SMALL

MAGNETIC TIP

We want to estimate how large a B1 will be required to saturate in an exper-

iment using a small magnetic tip. In Chapter 3, we argued that the steady state

solutions to the Bloch equations were an inadequate model for the magnetization

in the small tip experiment because the spins did not remain in the sensitive slice

long enough to reach steady state. Here we will extend this argument to estimate

the necessary transverse field magnitude for reaching the steady state using a small

magnetic tip.

In Chapter 3, we estimated the thickness of the instantaneous resonant slice to

be

∆xsat =
2π

γGT2

(A.1)

=
∆B

G
(A.2)

where γ is the gyromagnetic ratio, G = ∂Bz/∂x is the tip field gradient, T2 is the

spin-spin relaxation time and ∆B is the resonance linewidth in units of magnetic

field. Eq. A.2 is the correct thickness of the resonant slice in the limit B1 � ∆B.

If B1 is larger than ∆B, Eq. A.2 should be rewritten as

∆xstrong B1
sat =

B1

G
. (A.3)

In Chapter 3 we proposed that the steady state solution applies in the limit

∆xsat � ∆xosc where ∆xosc = vTsat and v = 2πfcxpk is the cantilever velocity.

Using Eq. A.3 and setting Tsat = 2T2 = 2 × 500 ns, G = 40 G/nm, fc = 7374 Hz
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and xpk = 40 nm, as in Chapter 3, we calculate that B1 ≥ 74 G is necessary to

reach ∆xsat ≥ ∆xosc.

The B1 estimated above is far to large because it assumes that the spin must

saturate completely during the time it remains in the sensitive slice. However, the

spin moves in and out of the sensitive slice faster than T1 which means that we

can saturate some, then recover some and eventually saturate completely using a

much smaller B1. Using the Bloch equations, Torrey has shown, for an ensemble

exactly on resonance, the 1/e saturation time is

Tsat =
2T1T2

T1 + T2

, (A.4)

which in our limit of T1 � T2 is the Tsat = 2T2 used above [118]. Let us assume

the magnetic field at the spin is

Bz(t) = B0 +Gxpk sin(2πf0t) (A.5)

and the resonance condition is met when Bz(t) = B0. Further, we will assume

that when |Bz(t) − B0| ≤ B1 the magnetization is exactly on resonance. The

magnetization will spent a time

ton =
B1

πf0Gxpk

(A.6)

on resonance for every half cantilever cycle, where we have used ton � Tc. During

ton the magnetization will decay exponentially with Tsat. During the remaining

half cycle, trecover = Tc/2 − ton the z magnetization will recover with T1. As long

as

−∆Mon > ∆Mrecover (A.7)

where ∆Mon and ∆Mrecover are the change in magnetization during ton and trecover,

respectively, the system will eventually reach a mildly oscillating saturated state.
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For our system we expect ton � Tsat and trecover � T1, which will allow us to

approximate the exponential growth (∆Mrecover) and exponential decay (∆Mon) in

Eq. A.7 by the first two terms of their Taylor expansions,

ton

Tsat

>
trecover

T1

. (A.8)

Inserting the above values for ton and trecover, rearranging to solve for B1 we find,

B1 >
πf0GxpkTcTsat

2(T1 + Tsat)
. (A.9)

Inserting our values from above in to Eq. A.9, we find B1 > 2.2 G. A transverse

field this large should be experimentally accessible, although depending on the

details of the spin location and cantilever amplitude, this may also be enough B1

to perform OSCAR-style spin flips, providing a 2× enhancement in the size of the

spin signal.
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